16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ants Can Learn to Forage on One-Way Trails

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The trails formed by many ant species between nest and food source are two-way roads on which outgoing and returning workers meet and touch each other all along. The way to get back home, after grasping a food load, is to take the same route on which they have arrived from the nest. In many species such trails are chemically marked by pheromones providing orientation cues for the ants to find their way. Other species rely on their vision and use landmarks as cues. We have developed a method to stop foraging ants from shuttling on two-way trails. The only way to forage is to take two separate roads, as they cannot go back on their steps after arriving at the food or at the nest. The condition qualifies as a problem because all their orientation cues – chemical, visual or any other - are disrupted, as all of them cannot but lead the ants back to the route on which they arrived. We have found that workers of the leaf-cutting ant Atta sexdens rubropilosa can solve the problem. They could not only find the alternative way, but also used the unidirectional traffic system to forage effectively. We suggest that their ability is an evolutionary consequence of the need to deal with environmental irregularities that cannot be negotiated by means of excessively stereotyped behavior, and that it is but an example of a widespread phenomenon. We also suggest that our method can be adapted to other species, invertebrate and vertebrate, in the study of orientation, memory, perception, learning and communication.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          The principles of collective animal behaviour.

          In recent years, the concept of self-organization has been used to understand collective behaviour of animals. The central tenet of self-organization is that simple repeated interactions between individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity at the level of the individual units of which the system is composed. The suggestion is that biological structures such as termite mounds, ant trail networks and even human crowds can be explained in terms of repeated interactions between the animals and their environment, without invoking individual complexity. Here, I review cases in which the self-organization approach has been successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish schools have all been accurately described in terms of individuals following simple sets of rules. Unlike the simple units composing physical systems, however, animals are themselves complex entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone. I argue that the key to understanding collective behaviour lies in identifying the principles of the behavioural algorithms followed by individual animals and of how information flows between the animals. These principles, such as positive feedback, response thresholds and individual integrity, are repeatedly observed in very different animal societies. The future of collective behaviour research lies in classifying these principles, establishing the properties they produce at a group level and asking why they have evolved in so many different and distinct natural systems. Ultimately, this research could inform not only our understanding of animal societies, but also the principles by which we organize our own society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Desert ant navigation: how miniature brains solve complex tasks.

            This essay presents and discusses the state of the art in studies of desert ant (Cataglyphis) navigation. In dealing with behavioural performances, neural mechanisms, and ecological functions these studies ultimately aim at an evolutionary understanding of the insect's navigational toolkit: its skylight (polarization) compass, its path integrator, its view-dependent ways of recognizing places and following landmark routes, and its strategies of flexibly interlinking these modes of navigation to generate amazingly rich behavioural outputs. The general message is that Cataglyphis uses path integration as an egocentric guideline to acquire continually updated spatial information about places and routes. Hence, it relies on procedural knowledge, and largely context-dependent retrieval of such knowledge, rather than on all-embracing geocentred representations of space.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Insect Societies

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                1 April 2009
                : 4
                : 4
                : e5024
                Affiliations
                [1 ]Department of Physiology, University of São Paulo Institute of Biosciences, São Paulo, Brazil
                [2 ]Department of Experimental Psychology, University of São Paulo Institute of Psychology, São Paulo, Brazil
                University of Arizona, United States of America
                Author notes

                Conceived and designed the experiments: PLR AFH GFX CAN FLR. Performed the experiments: PLR AFH FLR. Analyzed the data: PLR AFH GFX CAN FLR. Contributed reagents/materials/analysis tools: PLR CAN FLR. Wrote the paper: PLR FLR.

                [¤]

                Current address: Centro Universitário Fundação Instituto para o Ensino de Osasco, UNIFIEO, Osasco, Brazil

                Article
                08-PONE-RA-07388R2
                10.1371/journal.pone.0005024
                2659768
                19337369
                4c62bddf-70a7-4dcd-9af6-6caa2a94fad0
                Ribeiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 November 2008
                : 5 March 2009
                Page count
                Pages: 7
                Categories
                Research Article
                Ecology/Behavioral Ecology
                Evolutionary Biology/Animal Behavior
                Neuroscience/Animal Cognition
                Neuroscience/Experimental Psychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article