6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aurora kinase A drives the evolution of resistance to third generation EGFR inhibitors in lung cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of pre-existing subclones, remains unclear. In EGFR-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires AURKA activity. Non-genetic resistance through the activation of AURKA by its co-activator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in pre-clinical models. Treatment induced activation of AURKA was associated with resistance to EGFR inhibitors in-vitro, in-vivo and in individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA driven residual disease and acquired resistance.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients

          Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers

            A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant protein product (e.g. EGFR inhibitor treatment in EGFR-mutant lung cancers). However, genetically-driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1122 EGFR-mutant lung cancer cell-free DNA samples and whole exome analysis of seven longitudinally collected tumor samples from an EGFR-mutant lung cancer patient, we identify critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We define new pathways limiting EGFR inhibitor response, including WNT/β-catenin and cell cycle gene (e.g. CDK4, CDK6) alterations. Tumor genomic complexity increases with EGFR inhibitor treatment and co-occurring alterations in CTNNB1, and PIK3CA exhibit non-redundant functions that cooperatively promote tumor metastasis or limit EGFR inhibitor response. This study challenges the prevailing single-gene driver oncogene view and links clinical outcomes to co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancer patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rociletinib in EGFR-mutated non-small-cell lung cancer.

              Non-small-cell lung cancer (NSCLC) with a mutation in the gene encoding epidermal growth factor receptor (EGFR) is sensitive to approved EGFR inhibitors, but resistance develops, mediated by the T790M EGFR mutation in most cases. Rociletinib (CO-1686) is an EGFR inhibitor active in preclinical models of EGFR-mutated NSCLC with or without T790M. In this phase 1-2 study, we administered rociletinib to patients with EGFR-mutated NSCLC who had disease progression during previous treatment with an existing EGFR inhibitor. In the expansion (phase 2) part of the study, patients with T790M-positive disease received rociletinib at a dose of 500 mg twice daily, 625 mg twice daily, or 750 mg twice daily. Key objectives were assessment of safety, side-effect profile, pharmacokinetics, and preliminary antitumor activity of rociletinib. Tumor biopsies to identify T790M were performed during screening. Treatment was administered in continuous 21-day cycles. A total of 130 patients were enrolled. The first 57 patients to be enrolled received the free-base form of rociletinib (150 mg once daily to 900 mg twice daily). The remaining patients received the hydrogen bromide salt (HBr) form (500 mg twice daily to 1000 mg twice daily). A maximum tolerated dose (the highest dose associated with a rate of dose-limiting toxic effects of less than 33%) was not identified. The only common dose-limiting adverse event was hyperglycemia. In an efficacy analysis that included patients who received free-base rociletinib at a dose of 900 mg twice daily or the HBr form at any dose, the objective response rate among the 46 patients with T790M-positive disease who could be evaluated was 59% (95% confidence interval [CI], 45 to 73), and the rate among the 17 patients with T790M-negative disease who could be evaluated was 29% (95% CI, 8 to 51). Rociletinib was active in patients with EGFR-mutated NSCLC associated with the T790M resistance mutation. (Funded by Clovis Oncology; ClinicalTrials.gov number, NCT01526928.).
                Bookmark

                Author and article information

                Journal
                9502015
                8791
                Nat Med
                Nat. Med.
                Nature medicine
                1078-8956
                1546-170X
                5 October 2018
                26 November 2018
                January 2019
                26 May 2019
                : 25
                : 1
                : 111-118
                Affiliations
                [1 ]Department of Bioengineering and Therapeutic Sciences. University of California San Francisco, San Francisco, California, USA
                [2 ]Helen Diller Family Comprehensive Cancer Center. University of California San Francisco, San Francisco, California, USA
                [3 ]Department of Medicine. University of California San Francisco, San Francisco, California, USA
                [4 ]Department of Cell and Tissue Biology. University of California San Francisco, San Francisco, California, USA
                [5 ]Department of Pathology. University of California San Francisco, San Francisco, California, USA
                [6 ]Clovis Oncology, Inc. Boulder, Colorado, USA
                Author notes

                AUTHOR CONTRIBUTIONS

                Concieved Project: K.N.S., S.B. Performed Experiments: K.N.S., R.B., J.W., J.Rotow, J.Rohrberg, V.E.W., H.J.D., J.G., V.O., G.H., M.M.M., A.M., J.K., H.J.H., L.R., G.K. Data analysis and interpretation: K.N.S., H.J.D., S.K., A.K., S.D., G.K. Writing Manuscript: K.N.S., S.B. Manuscript Finalization: All authors. Supervision: T.C.H., A.D.S., F.M., A.G., C.M.B., T.G.B, S.B. Funding: S.B.

                [* ]Correspondence: Sourav Bandyopadhyay, Sourav.bandyopadhyay@ 123456ucsf.edu
                Article
                NIHMS1508964
                10.1038/s41591-018-0264-7
                6324945
                30478424
                4c65182b-da8b-4105-a167-cd96ac77782f

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article