16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug resistant epilepsy and ketogenic diet: A narrative review of mechanisms of action

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug-resistant epilepsy (DRE) poses a significant global challenge, impacting the well-being of patients. Anti-epileptic drugs often fail to effectively control seizures in individuals with DRE. This condition not only leads to persistent seizures but also induces neurochemical imbalances, elevating the risk of sudden unexpected death in epilepsy and comorbidities. Moreover, patients experience mood and personality alterations, educational and vocational setbacks, social isolation, and cognitive impairments. Ketogenic diet has emerged as a valuable therapeutic approach for DRE, having been utilized since 1920. Various types of ketogenic diets have demonstrated efficacy in controlling seizures. By having a multimodal mechanism of action, the ketogenic diet reduces neuronal excitability and the frequency of seizure episodes. In our narrative review, we have initially provided a concise overview of the factors contributing to drug resistance in epilepsy. Subsequently, we have discussed the different available ketogenic diets. We have reviewed the underlying mechanisms through which the ketogenic diet operates. These mechanisms encompass decreased neuronal excitability, enhanced mitochondrial function, alterations in sleep patterns, and modulation of the gut microbiome. Understanding the complex mechanisms by which this diet acts is essential as it is a rigorous diet and requires good compliance. Hence knowledge of the mechanisms may help to advance research on achieving similar therapeutic effects through other less stringent approaches.

          Graphical abstract

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies.

          To improve patient care and facilitate clinical research, the International League Against Epilepsy (ILAE) appointed a Task Force to formulate a consensus definition of drug resistant epilepsy. The overall framework of the definition has two "hierarchical" levels: Level 1 provides a general scheme to categorize response to each therapeutic intervention, including a minimum dataset of knowledge about the intervention that would be needed; Level 2 provides a core definition of drug resistant epilepsy using a set of essential criteria based on the categorization of response (from Level 1) to trials of antiepileptic drugs. It is proposed as a testable hypothesis that drug resistant epilepsy is defined as failure of adequate trials of two tolerated, appropriately chosen and used antiepileptic drug schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom. This definition can be further refined when new evidence emerges. The rationale behind the definition and the principles governing its proper use are discussed, and examples to illustrate its application in clinical practice are provided.
            • Record: found
            • Abstract: found
            • Article: not found

            Ketone body β-hydroxybutyrate blocks the NLRP3 inflammasome-mediated inflammatory disease

            Ketone bodies , β-hydroxybutyrate (BHB) and acetoacetate support mammalian survival during states of energy deficit by serving as alternative source of ATP 1 . BHB levels are elevated during starvation, high-intensity exercise or by the low carbohydrate ketogenic diet 2 . Prolonged caloric restriction or fasting reduces inflammation as immune system adapts to low glucose supply and energy metabolism switches towards mitochondrial fatty acid oxidation, ketogenesis and ketolysis 2-6 . However, role of ketones bodies in regulation of innate immune response is unknown. We report that BHB, but neither acetoacetate nor structurally-related short chain fatty acids, butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to several structurally unrelated NLRP3 activators, without impacting NLRC4, AIM2 or non-canonical caspase-11 inflammasome activation. Mechanistically, BHB inhibits NLRP3 inflammasome by preventing K+ efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 were not dependent on chirality or classical starvation regulated mechanisms like AMPK, reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocked NLRP3 inflammasome without undergoing oxidation in TCA cycle, independently of uncoupling protein-2 (UCP2), Sirt2, receptor Gpr109a and inhibition of NLRP3 did not correlate with magnitude of histone acetylation in macrophages. BHB reduced the NLRP3 inflammasome mediated IL-1β and IL-18 production in human monocytes. In vivo, BHB attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases like Muckle-Wells Syndrome (MWS), Familial Cold Autoinflammatory syndrome (FCAS) and urate crystal induce body cavity inflammation. Taken together, these findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be mechanistically linked to BHB-mediated inhibition of the NLRP3 inflammasome, and point to the potential use of interventions that elevate circulating BHB against NLRP3-mediated proinflammatory diseases.
              • Record: found
              • Abstract: found
              • Article: not found

              Early identification of refractory epilepsy.

              More than 30 percent of patients with epilepsy have inadequate control of seizures with drug therapy, but why this happens and whether it can be predicted are unknown. We studied the response to antiepileptic drugs in patients with newly diagnosed epilepsy to identify factors associated with subsequent poor control of seizures. We prospectively studied 525 patients (age, 9 to 93 years) who were given a diagnosis, treated, and followed up at a single center between 1984 and 1997. Epilepsy was classified as idiopathic (with a presumed genetic basis), symptomatic (resulting from a structural abnormality), or cryptogenic (resulting from an unknown underlying cause). Patients were considered to be seizure-free if they had not had any seizures for at least one year. Among the 525 patients, 333 (63 percent) remained seizure-free during antiepileptic-drug treatment or after treatment was stopped. The prevalence of persistent seizures was higher in patients with symptomatic or cryptogenic epilepsy than in those with idiopathic epilepsy (40 percent vs. 26 percent, P=0.004) and in patients who had had more than 20 seizures before starting treatment than in those who had had fewer (51 percent vs. 29 percent, P<0.001). The seizure-free rate was similar in patients who were treated with a single established drug (67 percent) and patients who were treated with a single new drug (69 percent). Among 470 previously untreated patients, 222 (47 percent) became seizure-free during treatment with their first antiepileptic drug and 67 (14 percent) became seizure-free during treatment with a second or third drug. In 12 patients (3 percent) epilepsy was controlled by treatment with two drugs. Among patients who had no response to the first drug, the percentage who subsequently became seizure-free was smaller (11 percent) when treatment failure was due to lack of efficacy than when it was due to intolerable side effects (41 percent) or an idiosyncratic reaction (55 percent). Patients who have many seizures before therapy or who have an inadequate response to initial treatment with antiepileptic drugs are likely to have refractory epilepsy.

                Author and article information

                Contributors
                Journal
                World Neurosurg X
                World Neurosurg X
                World Neurosurgery: X
                Elsevier
                2590-1397
                25 February 2024
                April 2024
                25 February 2024
                : 22
                : 100328
                Affiliations
                [a ]Department of Physiology, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
                [b ]Department of Physiology, Institute of Medical Sciences & SUM Hospital, Odisha, India
                [c ]Department of Biochemistry, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
                Author notes
                []Corresponding author. Department of Physiology, All India Institute of Medical Sciences Bhubaneswar, Odisha-751019, India. pmishra2789@ 123456gmail.com
                Article
                S2590-1397(24)00059-0 100328
                10.1016/j.wnsx.2024.100328
                10914588
                38444870
                4c77e1a3-38b4-4c3e-ae22-6fa72351dbff
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 June 2023
                : 21 February 2024
                Categories
                Literature Review

                ketogenic diet,refractory epilepsy,anti-epileptic drugs,neuronal excitability,sleep,gut microbiome,gut–brain axis,drug resistance

                Comments

                Comment on this article

                Related Documents Log