62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Very high-throughput sequencing technologies need to be matched by high-throughput functional studies if we are to make full use of the current explosion in genome sequences. We have generated a very large bacterial mutant pool, consisting of an estimated 1.1 million transposon mutants and we have used genomic DNA from this mutant pool, and Illumina nucleotide sequencing to prime from the transposon and sequence into the adjacent target DNA. With this method, which we have called TraDIS (transposon directed insertion-site sequencing), we have been able to map 370,000 unique transposon insertion sites to the Salmonella enterica serovar Typhi chromosome. The unprecedented density and resolution of mapped insertion sites, an average of one every 13 base pairs, has allowed us to assay simultaneously every gene in the genome for essentiality and generate a genome-wide list of candidate essential genes. In addition, the semiquantitative nature of the assay allowed us to identify genes that are advantageous and those that are disadvantageous for growth under standard laboratory conditions. Comparison of the mutant pool following growth in the presence or absence of ox bile enabled every gene to be assayed for its contribution toward bile tolerance, a trait required of any enteric bacterium and for carriage of S. Typhi in the gall bladder. This screen validated our hypothesis that we can simultaneously assay every gene in the genome to identify niche-specific essential genes.

          Related collections

          Author and article information

          Journal
          Genome Res
          Genome research
          Cold Spring Harbor Laboratory
          1549-5469
          1088-9051
          Dec 2009
          : 19
          : 12
          Affiliations
          [1 ] The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom.
          Article
          gr.097097.109
          10.1101/gr.097097.109
          2792183
          19826075
          4c8297be-6f53-4cf9-9a14-b560327b954d
          History

          Comments

          Comment on this article