16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Aire and Foxp3 Expression in a Particular Microenvironment for T Cell Differentiation

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: The thymus is the primary lymphoid organ responsible for T cell development and the establishment of central self-tolerance. Among thymic epithelial cells, thymic nurse cells (TNC) interact closely with immature thymocytes and constitute a special microenvironment for T cell differentiation and selection. In addition, TNC express neuroendocrine self-antigens such as oxytocin and insulin-like growth factor-2, whose intrathymic transcription is regulated by the autoimmune regulator gene/protein (Aire). Both effector and natural regulatory T cell (nTreg) lineages develop in the thymus, but the mechanisms leading to nTreg selection in the thymus are still unclear. Foxp3 is the most specific nTreg marker that is required for nTreg functional activity, but not for engagement into the Treg lineage. Aire has been suggested to be a potential factor implicated in this role. The objective of this study was to characterize Aire and Foxp3 expression in TNC/thymocyte complexes. Methods: Aire and Foxp3 expression was investigated by RT-qPCR in TNC/thymocyte complexes isolated by enzymatic digestion and sedimentation. Aire and Foxp3 proteins were located by confocal microscopy and specific immunocytochemistry. Results: Both Aire and Foxp3 transcripts were detected in TNC/thymocyte complexes. Foxp3 was detected in the nucleus of thymocytes internalized into TNC. Aire was located mainly in TNC cytoplasm and, although to a lower degree, in the nucleus of some TNC-associated thymocytes. Conclusions: Aire and Foxp3 are present in the particular TNC microenvironment which has previously been shown to support thymic selection. The differential localization of these two markers suggests a role for TNC in nTreg development.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Projection of an immunological self shadow within the thymus by the aire protein.

          Humans expressing a defective form of the transcription factor AIRE (autoimmune regulator) develop multiorgan autoimmune disease. We used aire- deficient mice to test the hypothesis that this transcription factor regulates autoimmunity by promoting the ectopic expression of peripheral tissue- restricted antigens in medullary epithelial cells of the thymus. This hypothesis proved correct. The mutant animals exhibited a defined profile of autoimmune diseases that depended on the absence of aire in stromal cells of the thymus. Aire-deficient thymic medullary epithelial cells showed a specific reduction in ectopic transcription of genes encoding peripheral antigens. These findings highlight the importance of thymically imposed "central" tolerance in controlling autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease.

            Naturally arising CD25+ CD4+ regulatory T (Treg) cells, most of which are produced by the normal thymus as a functionally mature T-cell subpopulation, play key roles in the maintenance of immunologic self-tolerance and negative control of a variety of physiological and pathological immune responses. Natural Tregs specifically express Foxp3, a transcription factor that plays a critical role in their development and function. Complete depletion of Foxp3-expressing natural Tregs, whether they are CD25+ or CD25-, activates even weak or rare self-reactive T-cell clones, inducing severe and widespread autoimmune/inflammatory diseases. Natural Tregs are highly dependent on exogenously provided interleukin (IL)-2 for their survival in the periphery. In addition to Foxp3 and IL-2/IL-2 receptor, deficiency or functional alteration of other molecules, expressed by T cells or non-T cells, may affect the development/function of Tregs or self-reactive T cells, or both, and consequently tip the peripheral balance between the two populations toward autoimmunity. Elucidation of the molecular and cellular basis of this Treg-mediated active maintenance of self-tolerance will facilitate both our understanding of the pathogenetic mechanism of autoimmune disease and the development of novel methods of autoimmune disease prevention and treatment via enhancing and re-establishing Treg-mediated dominant control over self-reactive T cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Foxp3-dependent programme of regulatory T-cell differentiation.

              Regulatory CD4+ T cells (Tr cells), the development of which is critically dependent on X-linked transcription factor Foxp3 (forkhead box P3), prevent self-destructive immune responses. Despite its important role, molecular and functional features conferred by Foxp3 to Tr precursor cells remain unknown. It has been suggested that Foxp3 expression is required for both survival of Tr precursors as well as their inability to produce interleukin (IL)-2 and independently proliferate after T-cell-receptor engagement, raising the possibility that such 'anergy' and Tr suppressive capacity are intimately linked. Here we show, by dissociating Foxp3-dependent features from those induced by the signals preceding and promoting its expression in mice, that the latter signals include several functional and transcriptional hallmarks of Tr cells. Although its function is required for Tr cell suppressor activity, Foxp3 to a large extent amplifies and fixes pre-established molecular features of Tr cells, including anergy and dependence on paracrine IL-2. Furthermore, Foxp3 solidifies Tr cell lineage stability through modification of cell surface and signalling molecules, resulting in adaptation to the signals required to induce and maintain Tr cells. This adaptation includes Foxp3-dependent repression of cyclic nucleotide phosphodiesterase 3B, affecting genes responsible for Tr cell homeostasis.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2009
                January 2009
                15 December 2008
                : 16
                : 1
                : 35-44
                Affiliations
                aCenter of Immunology, Institute of Pathology, and bLaboratory of Histology, University of Liege, Liege-Sart Tilman, Belgium; cMolecular Pathology, University of Tartu, Tartu, Estonia
                Article
                179665 Neuroimmunomodulation 2009;16:35–44
                10.1159/000179665
                19077444
                4c86075e-d665-4681-89f8-dd18ffbd5153
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 15 April 2008
                : 11 July 2008
                Page count
                Figures: 6, Tables: 1, References: 47, Pages: 10
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Regulatory T cells,Aire,Foxp3,Thymic nurse cells

                Comments

                Comment on this article