20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Developments in the Therapy of Protozoan Infections

      research-article
      , *
      The Open Medicinal Chemistry Journal
      Bentham Open
      Protozoa, protease, topoisomerase, RNAi, nanovectors.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protozoan parasites cause serious human and zoonotic infections, including life-threatening diseases such as malaria, African and American trypanosomiasis, and leishmaniasis. These diseases are no more common in the developed world, but together they still threaten about 40% of the world population (WHO estimates). Mortality and morbidity are high in developing countries, and the lack of vaccines makes chemotherapy the only suitable option. However, available antiparasitic drugs are hampered by more or less marked toxic side effects and by the emergence of drug resistance. As the main prevalence of parasitic diseases occurs in the poorest areas of the world, the interest of the pharmaceutical companies in the development of new drugs has been traditionally scarce. The establishment of public-private partnerships focused on tropical diseases is changing this situation, allowing the exploitation of the technological advances that took place during the past decade related to genomics, proteomics, and in silico drug discovery approaches. These techniques allowed the identification of new molecular targets that in some cases are shared by different parasites. In this review we outline the recent developments in the fields of protease and topoisomerase inhibitors, antimicrobial and cell-penetrating peptides, and RNA interference. We also report on the rapidly developing field of new vectors (micro and nano particles, mesoporous materials) that in some cases can cross host or parasite natural barriers and, by selectively delivering new or already in use drugs to the target site, minimize dosage and side effects.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics

          The recent discovery of new potent therapeutic molecules that do not reach the clinic due to poor delivery and low bioavailability have made of delivery a key stone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs). CPPs were first discovered based on the potency of several proteins to enter cells. Numerous CPPs have been described so far, which can be grouped into two major classes, the first requiring chemical linkage with the drug for cellular internalization and the second involving formation of stable, non-covalent complexes with drugs. Nowadays, CPPs constitute very promising tools for non-invasive cellular import of cargo and have been successfully applied for in vitro and in vivo delivery of therapeutic molecules varying from small chemical molecule, nucleic acids, proteins, peptides, liposomes and particles. This review will focus on the structure/function and cellular uptake mechanism of CPPs in the general context of drug delivery. We will also highlight the application of peptide carriers for the delivery of therapeutic molecules and provide an update of their clinical evaluation. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation.

            Gene silencing by double-stranded RNA, denoted RNA interference, represents a new paradigm for rational drug design. However, the transformative therapeutic potential of short interfering RNA (siRNA) has been stymied by a key obstacle-safe delivery to specified target cells in vivo. Macrophages are particularly attractive targets for RNA interference therapy because they promote pathogenic inflammatory responses in diseases such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease and diabetes. Here we report the engineering of beta1,3-D-glucan-encapsulated siRNA particles (GeRPs) as efficient oral delivery vehicles that potently silence genes in mouse macrophages in vitro and in vivo. Oral gavage of mice with GeRPs containing as little as 20 microg kg(-1) siRNA directed against tumour necrosis factor alpha (Tnf-alpha) depleted its messenger RNA in macrophages recovered from the peritoneum, spleen, liver and lung, and lowered serum Tnf-alpha levels. Screening with GeRPs for inflammation genes revealed that the mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) is a previously unknown mediator of cytokine expression. Importantly, silencing Map4k4 in macrophages in vivo protected mice from lipopolysaccharide-induced lethality by inhibiting Tnf-alpha and interleukin-1beta production. This technology defines a new strategy for oral delivery of siRNA to attenuate inflammatory responses in human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mode of action of linear amphipathic alpha-helical antimicrobial peptides.

              Z Oren, Y Shai (1998)
              The increasing resistance of bacteria to conventional antibiotics resulted in a strong effort to develop antimicrobial compounds with new mechanisms of action. Antimicrobial peptides seem to be a promising solution to this problem. Many studies aimed at understanding their mode of action were described in the past few years. The most studied group includes the linear, mostly alpha-helical peptides. Although the exact mechanism by which they kill bacteria is not clearly understood, it has been shown that peptide-lipid interactions leading to membrane permeation play a role in their activity. Membrane permeation by amphipathic alpha-helical peptides can proceed via either one of the two mechanisms: (a) transmembrane pore formation via a "barrel-stave" mechanism; and (b) membrane destruction/solubilization via a "carpet-like" mechanism. The purpose of this review is to summarize recent studies aimed at understanding the mode of action of linear alpha-helical antimicrobial peptides. This review, which is focused on magainins, cecropins, and dermaseptins as representatives of the amphipathic alpha-helical antimicrobial peptides, supports the carpet-like rather the barrel-stave mechanism. That these peptides vary with regard to their length, amino acid composition, and next positive charge, but act via a common mechanism, may imply that other linear antimicrobial peptides that share the same properties also share the same mechanism.
                Bookmark

                Author and article information

                Journal
                Open Med Chem J
                TOMCJ
                The Open Medicinal Chemistry Journal
                Bentham Open
                1874-1045
                9 March 2011
                2011
                : 5
                : 4-10
                Affiliations
                [1]Department of Clinical and Biological Sciences, University of Torino, Italy
                Author notes
                [* ]Address correspondence to this author at the Department of Clinical and Biological Sciences, Faculty of Medicine San Luigi Gonzaga, University of Torino at S. Luigi Gonzaga Hospital, 10043 Orbassano (TO), Italy; Tel: +39-0116705427; Fax: +39-0119038639; E-mail: dianella.savoia@ 123456unito.it
                Article
                TOMCJ-5-4
                10.2174/1874104501105010004
                3103884
                21629507
                4c8b8e57-2afa-4fe9-87cc-78d7895860b4
                © Zucca and Savoia; Licensee Bentham Open.

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http: //creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 5 February 2010
                : 25 May 2010
                : 20 June 2010
                Categories
                Article

                Pharmaceutical chemistry
                protease,topoisomerase,rnai,protozoa,nanovectors.
                Pharmaceutical chemistry
                protease, topoisomerase, rnai, protozoa, nanovectors.

                Comments

                Comment on this article