27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel Adipose Tissue-Mediated Resistance to Diet-Induced Visceral Obesity in 11 -Hydroxysteroid Dehydrogenase Type 1-Deficient Mice

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The metabolic syndrome (visceral obesity, insulin resistance, type 2 diabetes, and dyslipidemia) resembles Cushing's Syndrome, but without elevated circulating glucocorticoid levels. An emerging concept suggests that the aberrantly elevated levels of the intracellular glucocorticoid reamplifying enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD-1) found in adipose tissue of obese humans and rodents underlies the phenotypic similarities between idiopathic and "Cushingoid" obesity. Transgenic overexpression of 11 beta-HSD-1 in adipose tissue reproduces a metabolic syndrome in mice, whereas 11 beta-HSD-1 deficiency or inhibition has beneficial metabolic effects, at least on liver metabolism. Here we report novel protective effects of 11 beta-HSD-1 deficiency on adipose function, distribution, and gene expression in vivo in 11 beta-HSD-1 nullizygous (11 beta-HSD-1(-/-)) mice. 11 beta-HSD-1(-/-) mice expressed lower resistin and tumor necrosis factor-alpha, but higher peroxisome proliferator-activated receptor-gamma, adiponectin, and uncoupling protein-2 mRNA levels in adipose, indicating insulin sensitization. Isolated 11 beta-HSD-1(-/-) adipocytes exhibited higher basal and insulin-stimulated glucose uptake. 11 beta-HSD-1(-/-) mice also exhibited reduced visceral fat accumulation upon high-fat feeding. High-fat-fed 11 beta-HSD-1(-/-) mice rederived onto the C57BL/6J strain resisted diabetes and weight gain despite consuming more calories. These data provide the first in vivo evidence that adipose 11 beta-HSD-1 deficiency beneficially alters adipose tissue distribution and function, complementing the reported effects of hepatic 11 beta-HSD-1 deficiency or inhibition.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Relation of body fat distribution to metabolic complications of obesity.

          The importance of body fat distribution as a predictor of metabolic aberrations was evaluated in 9 nonobese and 25 obese, apparently healthy women. Plasma glucose and insulin levels during oral glucose loading were significantly higher in women with predominantly upper body segment obesity than in women with lower body segment obesity. Of the former group, 10 of 16 subjects had diabetic glucose tolerance results, while none of the latter group was diabetic. Fasting plasma triglyceride levels were also significantly higher in the upper body segment obese women. The site of adiposity in the upper body segment obese women was comprised of large fat cells, while in the lower body segment obese subjects, it was formed of normal size cells. In both types of obesity, abdominal fat cell size correlated significantly with postprandial plasma glucose and insulin levels. Thigh fat cell size gave no indication as to the presence of metabolic complications. Thigh adipocytes were also resistant to epinephrine-stimulated lipolysis, presumably due to an increase in alpha-adrenergic receptors. Thus, in women, the sites of fat predominance offer an important prognostic marker for glucose intolerance, hyperinsulinemia, and hypertriglyceridemia. This association may be related to the disparate morphology and metabolic behavior of fat cells associated with different body fat distributions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of obesity in transgenic mice after genetic ablation of brown adipose tissue.

            Brown adipose tissue, because of its capacity for uncoupled mitochondrial respiration, has been implicated as an important site of facultative energy expenditure. This has led to speculation that this tissue normally functions to prevent obesity. Attempts to ablate or denervate brown adipose tissue surgically have been uninformative because it exists in diffuse depots and has substantial capacity for regeneration and hypertrophy. Here we have used a transgenic toxigene approach to create two lines of transgenic mice with primary deficiency of brown adipose tissue. At 16 days, both lines have decreased brown fat and obesity. In one line, brown fat subsequently regenerates and obesity resolves. In the other line, the deficiency persists and obesity, with its morbid complications, advances. Obesity develops in the absence of hyperphagia, indicating that brown fat deficient mice have increased metabolic efficiency. As obesity progresses, transgenic animals develop hyperphagia. This study supports a critical role for brown adipose tissue in the nutritional homeostasis of mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of PPAR gamma gene expression by nutrition and obesity in rodents.

              The orphan nuclear receptor, peroxisome proliferator-activated receptor (PPAR) gamma, is implicated in mediating expression of fat-specific genes and in activating the program of adipocyte differentiation. The potential for regulation of PPAR gamma gene expression in vivo is unknown. We cloned a partial mouse PPAR gamma cDNA and developed an RNase protection assay that permits simultaneous quantitation of mRNAs for both gamma l and gamma 2 isoforms encoded by the PPAR gamma gene. Probes for detection of adipocyte P2, the obese gene product, leptin, and 18S mRNAs were also employed. Both gamma l and gamma 2 mRNAs were abundantly expressed in adipose tissue. PPAR gamma 1 expression was also detected at lower levels in liver, spleen, and heart; whereas, gamma l and gamma 2 mRNA were expressed at low levels in skeletal muscle. Adipose tissue levels of gamma l and gamma 2 were not altered in two murine models of obesity (gold thioglucose and ob/ob), but were modestly increased in mice with toxigene-induced brown fat ablation uncoupling protein diphtheria toxin A mice. Fasting (12-48 h) was associated with an 80% fall in PPAR gamma 2 and a 50% fall in PPAR gamma mRNA levels in adipose tissue. Western blot analysis demonstrated a marked effect of fasting to reduce PPAR gamma protein levels in adipose tissue. Similar effects of fasting on PPAR gamma mRNAs were noted in all three models of obesity. Insulin-deficient (streptozotocin) diabetes suppressed adipose tissue gamma l and gamma 2 expression by 75% in normal mice with partial restoration during insulin treatment. Levels of adipose tissue PPAR gamma 2 mRNA were increased by 50% in normal mice exposed to a high fat diet. In obese uncoupling protein diphtheria toxin A mice, high fat feeding resulted in de novo induction of PPAR gamma 2 expression in liver. We conclude (a) PPAR gamma 2 mRNA expression is most abundant in adipocytes in normal mice, but lower level expression is seen in skeletal muscle; (b) expression of adipose tissue gamma1 or gamma2 mRNAs is increased in only one of the three models of obesity; (c) PPAR gamma 1 and gamma 2 expression is downregulated by fasting and insulin-deficient diabetes; and (d) exposure of mice to a high fat diet increases adipose tissue expression of PPAR gamma (in normal mice) and induces PPAR gamma 2 mRNA expression in liver (in obese mice). These findings demonstrate in vivo modulation of PPAR gamma mRNA levels over a fourfold range and provide an additional level of regulation for the control of adipocyte development and function.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                March 26 2004
                April 01 2004
                March 26 2004
                April 01 2004
                : 53
                : 4
                : 931-938
                Article
                10.2337/diabetes.53.4.931
                15047607
                4c8bcf82-1d19-4335-af5c-2746fdd1570d
                © 2004
                History

                Comments

                Comment on this article