39
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm 2NiMnO 6

      research-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The polycrystalline sample of a double perovskite, Sm 2NiMnO 6 was synthesized by a solid-state reaction route. From the X-ray structural study, it is found that the structure of the material is monoclinic with lattice parameters: a = 4.1750(63) Å, b = 7.6113(63) Å, c = 5.9896(63) Å, and β = 112.70°. These parameters are very close to and consistent with those of such type of materials. The dielectric, impedance, AC conductivity, and electrical modulus properties of the sample were studied in the temperature range of 25–300 °C and the frequency range of 1 kHz–1 MHz. Typical relaxor behavior observed in the dielectric studies was confirmed by Vogel–Fulcher fitting. From the Nyquist plots, the temperature dependent contribution of grain and grain boundary effect was confirmed. The non-Debye type of relaxation was found using the complex impedance spectroscopy. The magnetic study revealed that the sample had paramagnetic behavior at room temperature. Magneto-electric (ME) coefficient was obtained by changing DC bias magnetic field. This type of lead-free relaxor ferroelectric compound may be useful for high-temperature applications.

          Related collections

          Author and article information

          Journal
          J Adv Ceram
          Journal of Advanced Ceramics
          Tsinghua University Press and Springer-Verlag Berlin Heidelberg (USA )
          2227-8508
          2226-4108
          01 June 2019
          01 October 2019
          : 8
          : 2
          : 174-185
          Affiliations
          aDepartment of Physics, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030, India
          Author notes
          *Corresponding author: Rutuparna DAS, E-mail: rutulucy2013@ 123456gmail.com
          Article
          s40145-018-0303-3
          10.1007/s40145-018-0303-3
          Copyright © The Author(s)

          This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See https://creativecommons.org/licenses/by/4.0/.

          Categories
          Research Articles

          Comments

          Comment on this article