104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pauciramosa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Calonectria pauciramosa is a pathogen of numerous plant hosts worldwide. Recent studies have indicated that it included cryptic species, some of which are identified in this study. Isolates from various geographical origins were collected and compared based on morphology, DNA sequence data of the β-tubulin, histone H3 and translation elongation factor-1α regions and mating compatibility. Comparisons of the DNA sequence data and mating compatibility revealed three new species. These included Ca. colombiana sp. nov. from Colombia, Ca. polizzii sp. nov. from Italy and Ca. zuluensis sp. nov. from South Africa, all of which had distinguishing morphological features. Based on DNA sequence data, Ca. brasiliensis is also elevated to species level.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous.

          The evolutionary history of the phytopathogenic Gibberella fujikuroi complex of Fusarium and related species was investigated by cladistic analysis of DNA sequences obtained from multiple unlinked loci. Gene phylogenies inferred from the mitochondrial small subunit (mtSSU) rDNA, nuclear 28S rDNA, and beta-tubulin gene were generally concordant, providing strong support for a fully resolved phylogeny of all biological and most morphological species. Discordance of the nuclear rDNA internal transcribed spacer 2 (ITS2) gene tree is due to paralogous or xenologous ITS2 sequences. PCR and sequence analysis demonstrated that every strain of the ingroup species tested possesses two highly divergent nonorthologous ITS2 types designated type I and type II. Only the major ITS2 type, however, is discernable when PCR products are amplified and sequenced directly with conserved primers. The minor ITS2 type was recovered using ITS2 type-specific PCR primers. Distribution of the major ITS2 type within the species lineages exhibits a homoplastic pattern of evolution, thus obscuring true phylogenetic relationships. The results suggest that the ancestral ITS2 types may have arisen following an ancient interspecific hybridization or gene duplication which occurred prior to the evolutionary radiation of the Gibberella fujikuroi complex and related species of Fusarium. The results also indicate that current morphological-based taxonomic schemes for these fungi are unnatural and a new classification is required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenetic species recognition and species concepts in fungi.

            The operational species concept, i.e., the one used to recognize species, is contrasted to the theoretical species concept. A phylogenetic approach to recognize fungal species based on concordance of multiple gene genealogies is compared to those based on morphology and reproductive behavior. Examples where Phylogenetic Species Recognition has been applied to fungi are reviewed and concerns regarding Phylogenetic Species Recognition are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies.

              Panama disease of banana, caused by the fungus Fusarium oxysporum f. sp. cubense, is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Previous work has indicated that F. oxysporum f. sp. cubense consists of several clonal lineages that may be genetically distant. In this study we tested whether lineages of the Panama disease pathogen have a monophyletic origin by comparing DNA sequences of nuclear and mitochondrial genes. DNA sequences were obtained for translation elongation factor 1alpha and the mitochondrial small subunit ribosomal RNA genes for F. oxysporum strains from banana, pathogenic strains from other hosts and putatively nonpathogenic isolates of F. oxysporum. Cladograms for the two genes were highly concordant and a partition-homogeneity test indicated the two datasets could be combined. The tree inferred from the combined dataset resolved five lineages corresponding to "F. oxysporum f. sp. cubense" with a large dichotomy between two taxa represented by strains most commonly isolated from bananas with Panama disease. The results also demonstrate that the latter two taxa have significantly different chromosome numbers. F. oxysporum isolates collected as nonpathogenic or pathogenic to other hosts that have very similar or identical elongation factor 1alpha and mitochondrial small subunit genotypes as banana pathogens were shown to cause little or no disease on banana. Taken together, these results indicate Panama disease of banana is caused by fungi with independent evolutionary origins.
                Bookmark

                Author and article information

                Journal
                Stud Mycol
                simycol
                Studies in Mycology
                CBS Fungal Biodiversity Centre
                0166-0616
                1872-9797
                2010
                : 66
                : Systematics of Calonectria: a genus of root, shoot and foliar pathogens
                : 15-30
                Affiliations
                [1 ] Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
                [2 ] CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
                [3 ] Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
                Author notes
                [* ] Correspondence: Lorenzo Lombard, lorenzo.lombard@ 123456fabi.up.ac.za
                Article
                0015
                10.3114/sim.2010.66.02
                2886098
                20806004
                4c9e5e17-969a-43bf-b67d-c7e7c8174820
                Copyright © Copyright 2010 CBS-KNAW Fungal Biodiversity Centre

                You are free to share - to copy, distribute and transmit the work, under the following conditions:

                Attribution:  You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

                Non-commercial:  You may not use this work for commercial purposes.

                No derivative works:  You may not alter, transform, or build upon this work.

                For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.

                History
                Categories
                Articles

                Plant science & Botany
                plant pathogens,systematics,sexual compatibility,calonectria
                Plant science & Botany
                plant pathogens, systematics, sexual compatibility, calonectria

                Comments

                Comment on this article