29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many coregulator proteins are recruited by DNA-bound transcription factors to remodel chromatin and activate transcription. However, mechanisms for coordinating actions of multiple coregulator proteins are poorly understood. We demonstrate that multiple protein-protein interactions by protein acetyltransferase TIP60 are required for estrogen-induced transcription of a subset of estrogen receptor (ER) α target genes in human cells. Estrogen-induced recruitment of TIP60 requires direct binding of TIP60 to ERα and the action of chromatin remodeling ATPase BRG1, leading to increased recruitment of histone methyltransferase MLL1 and increased monomethylation of histone H3 at Lys4. TIP60 recruitment also requires preferential binding of the TIP60 chromodomain to histone H3 containing monomethylated Lys4, which marks active and poised enhancer elements. After recruitment, TIP60 increases acetylation of histone H2A at Lys5. Thus, complex cooperation of TIP60 with ERα and other chromatin remodeling enzymes is required for estrogen-induced transcription.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis of estrogen receptor binding sites.

          The estrogen receptor is the master transcriptional regulator of breast cancer phenotype and the archetype of a molecular therapeutic target. We mapped all estrogen receptor and RNA polymerase II binding sites on a genome-wide scale, identifying the authentic cis binding sites and target genes, in breast cancer cells. Combining this unique resource with gene expression data demonstrates distinct temporal mechanisms of estrogen-mediated gene regulation, particularly in the case of estrogen-suppressed genes. Furthermore, this resource has allowed the identification of cis-regulatory sites in previously unexplored regions of the genome and the cooperating transcription factors underlying estrogen signaling in breast cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A high-resolution map of active promoters in the human genome.

            In eukaryotic cells, transcription of every protein-coding gene begins with the assembly of an RNA polymerase II preinitiation complex (PIC) on the promoter. The promoters, in conjunction with enhancers, silencers and insulators, define the combinatorial codes that specify gene expression patterns. Our ability to analyse the control logic encoded in the human genome is currently limited by a lack of accurate information regarding the promoters for most genes. Here we describe a genome-wide map of active promoters in human fibroblast cells, determined by experimentally locating the sites of PIC binding throughout the human genome. This map defines 10,567 active promoters corresponding to 6,763 known genes and at least 1,196 un-annotated transcriptional units. Features of the map suggest extensive use of multiple promoters by the human genes and widespread clustering of active promoters in the genome. In addition, examination of the genome-wide expression profile reveals four general classes of promoters that define the transcriptome of the cell. These results provide a global view of the functional relationships among transcriptional machinery, chromatin structure and gene expression in human cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.

              Many cofactors bind the hormone-activated estrogen receptor (ER), yet the specific regulators of endogenous ER-mediated gene transcription are unknown. Using chromatin immunoprecipitation (ChIP), we find that ER and a number of coactivators rapidly associate with estrogen responsive promoters following estrogen treatment in a cyclic fashion that is not predicted by current models of hormone activation. Cycles of ER complex assembly are followed by transcription. In contrast, the anti-estrogen tamoxifen (TAM) recruits corepressors but not coactivators. Using a genetic approach, we show that recruitment of the p160 class of coactivators is sufficient for gene activation and for the growth stimulatory actions of estrogen in breast cancer supporting a model in which ER cofactors play unique roles in estrogen signaling.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature Structural & Molecular Biology
                1545-9993
                1545-9985
                29 August 2011
                13 November 2011
                01 June 2012
                : 18
                : 12
                : 1358-1365
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
                [2 ]Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.
                Author notes
                Correspondence should addressed to M.R.S. ( stallcup@ 123456usc.edu )
                Article
                nihpa321138
                10.1038/nsmb.2153
                3230772
                22081016
                4caa7308-05b8-4915-9df8-f1de7d04102a

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Heart, Lung, and Blood Institute : NHLBI
                Award ID: R01 HL089726-04 || HL
                Funded by: National Heart, Lung, and Blood Institute : NHLBI
                Award ID: R01 HL089726-02S1 || HL
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article