Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Assessing experimentally derived interactions in a small world

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experimentally determined networks are susceptible to errors, yet important inferences can still be drawn from them. Many real networks have also been shown to have the small-world network properties of cohesive neighborhoods and short average distances between vertices. Although much analysis has been done on small-world networks, small-world properties have not previously been used to improve our understanding of individual edges in experimentally derived graphs. Here we focus on a small-world network derived from high-throughput (and error-prone) protein-protein interaction experiments. We exploit the neighborhood cohesiveness property of small-world networks to assess confidence for individual protein-protein interactions. By ascertaining how well each protein-protein interaction (edge) fits the pattern of a small-world network, we stratify even those edges with identical experimental evidence. This result promises to improve the quality of inference from protein-protein interaction networks in particular and small-world networks in general.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          Collective dynamics of 'small-world' networks.

          Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Emergence of scaling in random networks

            Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Statistical mechanics of complex networks

              Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 15 2003
                April 03 2003
                April 15 2003
                : 100
                : 8
                : 4372-4376
                10.1073/pnas.0735871100
                404686
                12676999
                © 2003
                Product

                Comments

                Comment on this article