18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Joint morphogenesis is an important phase of prenatal joint development during which the opposing cartilaginous rudiments acquire their reciprocal and interlocking shapes. At an early stage of development, the prenatal hip joint is formed of a deep acetabular cavity that almost totally encloses the head. By the time of birth, the acetabulum has become shallower and the femoral head has lost substantial sphericity, reducing joint coverage and stability. In this study, we use a dynamic mechanobiological simulation to explore the effects of normal (symmetric), reduced and abnormal (asymmetric) prenatal movements on hip joint shape, to understand their importance for postnatal skeletal malformations such as developmental dysplasia of the hip (DDH). We successfully predict the physiological trends of decreasing sphericity and acetabular coverage of the femoral head during fetal development. We show that a full range of symmetric movements helps to maintain some of the acetabular depth and femoral head sphericity, while reduced or absent movements can lead to decreased sphericity and acetabular coverage of the femoral head. When an abnormal movement pattern was applied, a deformed joint shape was predicted, with an opened asymmetric acetabulum and the onset of a malformed femoral head. This study provides evidence for the importance of fetal movements in the prevention and manifestation of congenital musculoskeletal disorders such as DDH.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical practice guideline: early detection of developmental dysplasia of the hip. Committee on Quality Improvement, Subcommittee on Developmental Dysplasia of the Hip. American Academy of Pediatrics.

          (2000)
          Developmental dysplasia of the hip is the preferred term to describe the condition in which the femoral head has an abnormal relationship to the acetabulum. Developmental dysplasia of the hip includes frank dislocation (luxation), partial dislocation (subluxation), instability wherein the femoral head comes in and out of the socket, and an array of radiographic abnormalities that reflect inadequate formation of the acetabulum. Because many of these findings may not be present at birth, the term developmental more accurately reflects the biologic features than does the term congenital. The disorder is uncommon. The earlier a dislocated hip is detected, the simpler and more effective is the treatment. Despite newborn screening programs, dislocated hips continue to be diagnosed later in infancy and childhood,(1-11) in some instances delaying appropriate therapy and leading to a substantial number of malpractice claims. The objective of this guideline is to reduce the number of dislocated hips detected later in infancy and childhood. The target audience is the primary care provider. The target patient is the healthy newborn up to 18 months of age, excluding those with neuromuscular disorders, myelodysplasia, or arthrogryposis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanobiological predictions of growth front morphology in developmental hip dysplasia.

            Developmental dysplasia of the hip (DDH) is the most common orthopedic problem of newborn children. Most clinicians and researchers agree that the primary cause of DDH is abnormal mechanical forces on the head of the femur due to limb position, pressure from the womb, or ligament laxity. The abnormal mechanical forces result in altered growth and bony deformities, in particular large neck-shaft and anteversion angles in the proximal femur and a shallow acetabulum. Previous studies have suggested that intermittent octahedral shear stress promotes growth and ossification, while intermittent hydrostatic compressive stress inhibits growth and ossification. We implemented these mechanobiological principles into a finite element model to predict the rate of progression of the growth front and the formation of coxa valga (large neck-shaft angle) in DDH. Under the assumed normal fetal loading conditions the hydrostatic stress was even across the growth front, but the octahedral shear stress was higher in the center than at the edges. This stress profile promoted growth in the center and a produced a convex growth front shape. Under loading conditions of the dysplastic hip, the octahedral shear stress was much larger on the medial side than on the lateral side, which promoted growth on the medial side and resulted in coxa valga. These results indicate that abnormal forces on the prenatal hip might influence total bone morphology and the development of DDH. These findings might help in understanding the etiology and pathology of other developmental bone deformities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanobiological simulations of prenatal joint morphogenesis.

              Joint morphogenesis is the process in which prenatal joints acquire their reciprocal and interlocking shapes. Despite the clinical importance of the process, it remains unclear how joints acquire their shapes. In this study, we simulate 3D mechanobiological joint morphogenesis for which the effects of a range of movements (or lack of movement) and different initial joint shapes are explored. We propose that static hydrostatic compression inhibits cartilage growth while dynamic hydrostatic compression promotes cartilage growth. Both pre-cavitational (no muscle contractions) and post-cavitational (with muscle contractions) phases of joint development were simulated. Our results showed that for hinge type motion (planar motion from 45° to 120°) the proximal joint surface developed a convex profile in the posterior region and the distal joint surface developed a slightly concave profile. When 3D movements from 40° to -40° in two planes were applied, simulating a rotational movement, the proximal joint surface developed a concave profile whereas the distal joint surface rudiment acquire a rounded convex profile, showing an interlocking shape typical of a ball and socket joint. The significance of this research is that it provides new and important insights into normal and abnormal joint development, and contributes to our understanding of the mechanical factors driving very early joint morphogenesis. An enhanced understanding of how prenatal joints form is critical for developing strategies for early diagnosis and preventative treatments for congenital musculoskeletal abnormalities such as developmental dysplasia of the hip.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Biomech
                J Biomech
                Journal of Biomechanics
                Elsevier Science
                0021-9290
                1873-2380
                18 September 2015
                18 September 2015
                : 48
                : 12
                : 3390-3397
                Affiliations
                [a ]Department of Bioengineering, Imperial College London, UK
                [b ]Department of Biomedical Engineering, Florida Institute of Technology, USA
                [c ]Department of Mechanical and Industrial Engineering, Northeastern University, USA
                Author notes
                [* ]Corresponding author. Tel.: +44 2075945189. n.nowlan@ 123456imperial.ac.uk
                Article
                S0021-9290(15)00339-5
                10.1016/j.jbiomech.2015.06.002
                4601017
                26163754
                4cb97807-1d7a-4b17-a25a-c7e069486801
                © 2015 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 June 2015
                Categories
                Article

                Biophysics
                joint shape,joint biomechanics,joint development,developmental dysplasia of the hip,ddh,computational model

                Comments

                Comment on this article