50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum–Mitochondria Contact and Mitophagy in Diabetic Nephropathy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria-associated endoplasmic reticulum membrane (MAM) may have a role in tubular injury in diabetic nephropathy (DN), but the precise mechanism remains unclear. Here, we demonstrate that the expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a critical regulator of MAM formation, is significantly decreased in renal tubules of patients with DN, and PACS-2 expression is positively correlated with renal function and negatively correlated with degrees of tubulointerstitial lesions. Conditional deletion of Pacs-2 in proximal tubules (PTs) aggravates albuminuria and tubular injury in a streptozotocin-induced mouse model of diabetes. Mitochondrial fragmentation, MAM disruption, and defective mitophagy accompanied by altered expression of mitochondrial dynamics and mitophagic proteins, including Drp1 and Becn1, are observed in tubules of diabetic mice; these changes are more pronounced in PT-specific Pacs-2 knockout mice. In vitro, overexpression of PACS-2 in HK-2 cells alleviates excessive mitochondrial fission induced by high glucose concentrations through blocking mitochondrial recruitment of DRP1 and subsequently restores MAM integrity and enhances mitophagy. Mechanistically, PACS-2 binds to BECN1 and mediates the relocalization of BECN1 to MAM, where it promotes the formation of mitophagosome. Together, these data highlight an important but previously unrecognized role of PACS-2 in ameliorating tubular injury in DN by facilitating MAM formation and mitophagy.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Pathologic classification of diabetic nephropathy.

          Although pathologic classifications exist for several renal diseases, including IgA nephropathy, focal segmental glomerulosclerosis, and lupus nephritis, a uniform classification for diabetic nephropathy is lacking. Our aim, commissioned by the Research Committee of the Renal Pathology Society, was to develop a consensus classification combining type1 and type 2 diabetic nephropathies. Such a classification should discriminate lesions by various degrees of severity that would be easy to use internationally in clinical practice. We divide diabetic nephropathy into four hierarchical glomerular lesions with a separate evaluation for degrees of interstitial and vascular involvement. Biopsies diagnosed as diabetic nephropathy are classified as follows: Class I, glomerular basement membrane thickening: isolated glomerular basement membrane thickening and only mild, nonspecific changes by light microscopy that do not meet the criteria of classes II through IV. Class II, mesangial expansion, mild (IIa) or severe (IIb): glomeruli classified as mild or severe mesangial expansion but without nodular sclerosis (Kimmelstiel-Wilson lesions) or global glomerulosclerosis in more than 50% of glomeruli. Class III, nodular sclerosis (Kimmelstiel-Wilson lesions): at least one glomerulus with nodular increase in mesangial matrix (Kimmelstiel-Wilson) without changes described in class IV. Class IV, advanced diabetic glomerulosclerosis: more than 50% global glomerulosclerosis with other clinical or pathologic evidence that sclerosis is attributable to diabetic nephropathy. A good interobserver reproducibility for the four classes of DN was shown (intraclass correlation coefficient = 0.84) in a test of this classification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagosomes form at ER-mitochondria contact sites.

            Autophagy is a tightly regulated intracellular bulk degradation/recycling system that has fundamental roles in cellular homeostasis. Autophagy is initiated by isolation membranes, which form and elongate as they engulf portions of the cytoplasm and organelles. Eventually isolation membranes close to form double membrane-bound autophagosomes and fuse with lysosomes to degrade their contents. The physiological role of autophagy has been determined since its discovery, but the origin of autophagosomal membranes has remained unclear. At present, there is much controversy about the organelle from which the membranes originate--the endoplasmic reticulum (ER), mitochondria and plasma membrane. Here we show that autophagosomes form at the ER-mitochondria contact site in mammalian cells. Imaging data reveal that the pre-autophagosome/autophagosome marker ATG14 (also known as ATG14L) relocalizes to the ER-mitochondria contact site after starvation, and the autophagosome-formation marker ATG5 also localizes at the site until formation is complete. Subcellular fractionation showed that ATG14 co-fractionates in the mitochondria-associated ER membrane fraction under starvation conditions. Disruption of the ER-mitochondria contact site prevents the formation of ATG14 puncta. The ER-resident SNARE protein syntaxin 17 (STX17) binds ATG14 and recruits it to the ER-mitochondria contact site. These results provide new insight into organelle biogenesis by demonstrating that the ER-mitochondria contact site is important in autophagosome formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct fission signatures predict mitochondrial degradation or biogenesis

              Mitochondrial fission is a highly regulated process that, when disrupted, can alter metabolism, proliferation and apoptosis1-3. Dysregulation has been linked to neurodegeneration3,4, cardiovascular disease3 and cancer5. Key components of the fission machinery include the endoplasmic reticulum6 and actin7, which initiate constriction before dynamin-related protein 1 (DRP1)8 binds to the outer mitochondrial membrane via adaptor proteins9-11, to drive scission12. In the mitochondrial life cycle, fission enables both biogenesis of new mitochondria and clearance of dysfunctional mitochondria through mitophagy1,13. Current models of fission regulation cannot explain how those dual fates are decided. However, uncovering fate determinants is challenging, as fission is unpredictable, and mitochondrial morphology is heterogeneous, with ultrastructural features that are below the diffraction limit. Here, we used live-cell structured illumination microscopy to capture mitochondrial dynamics. By analysing hundreds of fissions in African green monkey Cos-7 cells and mouse cardiomyocytes, we discovered two functionally and mechanistically distinct types of fission. Division at the periphery enables damaged material to be shed into smaller mitochondria destined for mitophagy, whereas division at the midzone leads to the proliferation of mitochondria. Both types are mediated by DRP1, but endoplasmic reticulum- and actin-mediated pre-constriction and the adaptor MFF govern only midzone fission. Peripheral fission is preceded by lysosomal contact and is regulated by the mitochondrial outer membrane protein FIS1. These distinct molecular mechanisms explain how cells independently regulate fission, leading to distinct mitochondrial fates.
                Bookmark

                Author and article information

                Contributors
                Journal
                Diabetes
                American Diabetes Association
                0012-1797
                May 01 2022
                February 08 2022
                May 01 2022
                February 08 2022
                : 71
                : 5
                : 1034-1050
                Affiliations
                [1 ]Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
                [2 ]Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
                Article
                10.2337/db21-0983
                35133431
                4cbc2dda-d3af-4498-af63-528cde45b46e
                © 2022

                https://www.diabetesjournals.org/journals/pages/license

                History

                Comments

                Comment on this article