1,085
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phase I-II study of hypofractionated simultaneous integrated boost using volumetric modulated arc therapy for adjuvant radiation therapy in breast cancer patients: a report of feasibility and early toxicity results in the first 50 treatments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To report results in terms of feasibility and early toxicity of hypofractionated simultaneous integrated boost (SIB) approach with Volumetric Modulated Arc Therapy (VMAT) as adjuvant treatment after breast-conserving surgery.

          Methods

          Between September 2010 and May 2011, 50 consecutive patients presenting early-stage breast cancer were submitted to adjuvant radiotherapy with SIB-VMAT approach using RapidArc in our Institution (Istituto Clinico Humanitas ICH). Three out of 50 patients were irradiated bilaterally (53 tumours in 50 patients). All patients were enrolled in a phase I-II trial approved by the ICH ethical committee. All 50 patients enrolled in the study underwent VMAT-SIB technique to irradiate the whole breast with concomitant boost irradiation of the tumor bed. Doses to whole breast and surgical bed were 40.5 Gy and 48 Gy respectively, delivered in 15 fractions over 3 weeks. Skin toxicities were recorded during and after treatment according to RTOG acute radiation morbidity scoring criteria with a median follow-up of 12 months (range 8–16). Cosmetic outcomes were assessed as excellent/good or fair/poor.

          Results

          The median age of the population was 68 years (range 36–88). According to AJCC staging system, 38 breast lesions were classified as pT1, and 15 as pT2; 49 cases were assessed as N0 and 4 as N1. The maximum acute skin toxicity by the end of treatment was Grade 0 in 20/50 patients, Grade 1 in 32/50, Grade 2 in 0 and Grade 3 in 1/50 (one of the 3 cases of bilateral breast irradiation). No Grade 4 toxicities were observed. All Grade 1 toxicities had resolved within 3 weeks. No significant differences in cosmetic scores on baseline assessment vs. 3 months and 6 months after the treatment were observed: all patients were scored as excellent/good (50/50) compared with baseline; no fair/poor judgment was recorded. No other toxicities or local failures were recorded during follow-up.

          Conclusions

          The 3-week course of postoperative radiation using VMAT with SIB showed to be feasible and was associated with acceptable acute skin toxicity profile. Long-term follow-up data are needed to assess late toxicity and clinical outcomes.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Volumetric modulated arc therapy: IMRT in a single gantry arc.

          In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial

            (2008)
            Summary Background The international standard radiotherapy schedule for breast cancer treatment delivers a high total dose in 25 small daily doses (fractions). However, a lower total dose delivered in fewer, larger fractions (hypofractionation) is hypothesised to be at least as safe and effective as the standard treatment. We tested two dose levels of a 13-fraction schedule against the standard regimen with the aim of measuring the sensitivity of normal and malignant tissues to fraction size. Methods Between 1998 and 2002, 2236 women with early breast cancer (pT1-3a pN0-1 M0) at 17 centres in the UK were randomly assigned after primary surgery to receive 50 Gy in 25 fractions of 2·0 Gy versus 41·6 Gy or 39 Gy in 13 fractions of 3·2 Gy or 3·0 Gy over 5 weeks. Women were eligible if they were aged over 18 years, did not have an immediate surgical reconstruction, and were available for follow-up. Randomisation method was computer generated and was not blinded. The protocol-specified principal endpoints were local-regional tumour relapse, defined as reappearance of cancer at irradiated sites, late normal tissue effects, and quality of life. Analysis was by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN59368779. Findings 749 women were assigned to the 50 Gy group, 750 to the 41·6 Gy group, and 737 to the 39 Gy group. After a median follow up of 5·1 years (IQR 4·4–6·0) the rate of local-regional tumour relapse at 5 years was 3·6% (95% CI 2·2–5·1) after 50 Gy, 3·5% (95% CI 2·1–4·3) after 41·6 Gy, and 5·2% (95% CI 3·5–6·9) after 39 Gy. The estimated absolute differences in 5-year local-regional relapse rates compared with 50 Gy were 0·2% (95% CI −1·3% to 2·6%) after 41·6 Gy and 0·9% (95% CI −0·8% to 3·7%) after 39 Gy. Photographic and patient self-assessments suggested lower rates of late adverse effects after 39 Gy than with 50 Gy, with an HR for late change in breast appearance (photographic) of 0·69 (95% CI 0·52–0·91, p=0·01). From a planned meta-analysis with the pilot trial, the adjusted estimates of α/β value for tumour control was 4·6 Gy (95% CI 1·1–8·1) and for late change in breast appearance (photographic) was 3·4 Gy (95% CI 2·3–4·5). Interpretation The data are consistent with the hypothesis that breast cancer and the dose-limiting normal tissues respond similarly to change in radiotherapy fraction size. 41·6 Gy in 13 fractions was similar to the control regimen of 50 Gy in 25 fractions in terms of local-regional tumour control and late normal tissue effects, a result consistent with the result of START Trial B. A lower total dose in a smaller number of fractions could offer similar rates of tumour control and normal tissue damage as the international standard fractionation schedule of 50 Gy in 25 fractions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France.

              To define the role of a 10-Gy boost to the primary tumor in the conservative treatment of early infiltrating breast carcinoma treated by limited surgery and radiotherapy. Between 1986 and 1992, 1,024 women with early breast carcinoma (< or = 3 cm in diameter) were treated by local excision, axillary dissection, and conventional 50-Gy irradiation given in 20 fractions over 5 weeks and then randomly assigned to receive either no further treatment or a boost of 10 Gy by electrons to the tumor bed. The median follow-up time was 3.3 years as of September 1994. The occurrence of telangiectasia was reported, and the patients were asked to evaluate the cosmetic result. At 5 years, 10 patients of 521 who had received the boost (Kaplan-Meier estimate of local relapse rate, 3.6%) and 20 of 503 who had received no further treatment (Kaplan-Meier estimate of local relapse rate, 4.5%) had developed a local recurrence (P = .044). After adjustment for the main prognostic variables, the relative risk was still significantly lower for the boost group (0.3; range, 0.12 to 0.95). The boost group had a higher rate of grade 1 and 2 telangiectasia (12.4% v 5.9%), but no difference was seen between the two treatment arms in the self-assessment score for the cosmetic result. Delivery of a boost of 10 Gy to the tumor bed after 50 Gy to the whole breast following limited surgery significantly reduces the risk of early local recurrence, with no serious deterioration in the cosmetic result. Additional follow-up evaluation will be required to assess the long-term results.
                Bookmark

                Author and article information

                Journal
                Radiat Oncol
                Radiat Oncol
                Radiation Oncology (London, England)
                BioMed Central
                1748-717X
                2012
                28 August 2012
                : 7
                : 145
                Affiliations
                [1 ]Radiotherapy and radiosurgery, Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Milano, Italy
                [2 ]Oncology Institute of Southern Switzerland, Medical Physics Unit, Bellinzona, Switzerland
                [3 ]Breast Surgery, Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Milano, Italy
                [4 ]Medical Oncology, Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Milano, Italy
                [5 ]Thoracic Surgery, Humanitas Cancer Center, Istituto Clinico Humanitas, Rozzano, Milano, Italy
                Article
                1748-717X-7-145
                10.1186/1748-717X-7-145
                3488023
                22929062
                4cbd63f8-9ed1-47a4-abdd-c2bf1e4634be
                Copyright ©2012 Scorsetti et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 March 2012
                : 25 July 2012
                Categories
                Study Protocol

                Oncology & Radiotherapy
                breast cancer,simultaneous integrated boost,volumetric modulated arc therapy,hypofractionation

                Comments

                Comment on this article