75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Giant Robber Crabs Monitored from Space: GPS-Based Telemetric Studies on Christmas Island (Indian Ocean)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the navigational capabilities of the world's largest land-living arthropod, the giant robber crab Birgus latro (Anomura, Coenobitidae); this crab reaches 4 kg in weight and can reach an age of up to 60 years. Populations are distributed over small Indo-Pacific islands of the tropics, including Christmas Island (Indian Ocean). Although this species has served as a crustacean model to explore anatomical, physiological, and ecological aspects of terrestrial adaptations, few behavioral analyses of it exist. We used a GPS-based telemetric system to analyze movements of freely roaming robber crabs, the first large-scale study of any arthropod using GPS technology to monitor behavior. Although female robber crabs are known to migrate to the coast for breeding, no such observations have been recorded for male animals. In total, we equipped 55 male robber crabs with GPS tags, successfully recording more than 1,500 crab days of activity, and followed some individual animals for as long as three months. Besides site fidelity with short-distance excursions, our data reveal long-distance movements (several kilometers) between the coast and the inland rainforest. These movements are likely related to mating, saltwater drinking and foraging. The tracking patterns indicate that crabs form route memories. Furthermore, translocation experiments show that robber crabs are capable of homing over large distances. We discuss if the search behavior induced in these experiments suggests path integration as another important navigation strategy.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Going wild: what a global small-animal tracking system could do for experimental biologists.

          Tracking animals over large temporal and spatial scales has revealed invaluable and spectacular biological information, particularly when the paths and fates of individuals can be monitored on a global scale. However, only large animals (greater than approximately 300 g) currently can be followed globally because of power and size constraints on the tracking devices. And yet the vast majority of animals is small. Tracking small animals is important because they are often part of evolutionary and ecological experiments, they provide important ecosystem services and they are of conservation concern or pose harm to human health. Here, we propose a small-animal satellite tracking system that would enable the global monitoring of animals down to the size of the smallest birds, mammals (bats), marine life and eventually large insects. To create the scientific framework necessary for such a global project, we formed the ICARUS initiative (www.IcarusInitiative.org), the International Cooperation for Animal Research Using Space. ICARUS also highlights how small-animal tracking could address some of the ;Grand Challenges in Environmental Sciences' identified by the US National Academy of Sciences, such as the spread of infectious diseases or the relationship between biological diversity and ecosystem functioning. Small-animal tracking would allow the quantitative assessment of dispersal and migration in natural populations and thus help solve enigmas regarding population dynamics, extinctions and invasions. Experimental biologists may find a global small-animal tracking system helpful in testing, validating and expanding laboratory-derived discoveries in wild, natural populations. We suggest that the relatively modest investment into a global small-animal tracking system will pay off by providing unprecedented insights into both basic and applied nature. Tracking small animals over large spatial and temporal scales could prove to be one of the most powerful techniques of the early 21st century, offering potential solutions to a wide range of biological and societal questions that date back two millennia to the Greek philosopher Aristotle's enigma about songbird migration. Several of the more recent Grand Challenges in Environmental Sciences, such as the regulation and functional consequences of biological diversity or the surveillance of the population ecology of zoonotic hosts, pathogens or vectors, could also be addressed by a global small-animal tracking system. Our discussion is intended to contribute to an emerging groundswell of scientific support to make such a new technological system happen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large-scale navigational map in a mammal.

            Navigation, the ability to reach desired goal locations, is critical for animals and humans. Animal navigation has been studied extensively in birds, insects, and some marine vertebrates and invertebrates, yet we are still far from elucidating the underlying mechanisms in other taxonomic groups, especially mammals. Here we report a systematic study of the mechanisms of long-range mammalian navigation. High-resolution global positioning system tracking of bats was conducted here, which revealed high, fast, and very straight commuting flights of Egyptian fruit bats (Rousettus aegyptiacus) from their cave to remote fruit trees. Bats returned to the same individual trees night after night. When displaced 44 km south, bats homed directly to one of two goal locations--familiar fruit tree or cave--ruling out beaconing, route-following, or path-integration mechanisms. Bats released 84 km south, within a deep natural crater, were initially disoriented (but eventually left the crater toward the home direction and homed successfully), whereas bats released at the crater-edge top homed directly, suggesting navigation guided primarily by distal visual landmarks. Taken together, these results provide evidence for a large-scale "cognitive map" that enables navigation of a mammal within its visually familiar area, and they also demonstrate the ability to home back when translocated outside the visually familiar area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insect-like olfactory adaptations in the terrestrial giant robber crab.

              The robber crab (Birgus latro), also known as the coconut crab, is the world's largest land-living arthropod, with a weight reaching 4 kg and a length of over half a meter. Apart from the marine larval stage, this crab is fully terrestrial, and will actually drown if submerged in water. A transition from sea to land raises dramatically new demands on the sensory equipment of an animal. In olfaction, the stimulus changes from hydrophilic molecules in aqueous solution to mainly hydrophobic in the gaseous phase. The olfactory system of land crabs thus represents an excellent opportunity for investigating the effects of the transition from sea to land. Have land crabs come to the same solutions as other terrestrial animals, or is their olfactory sense characterized by unique innovations? Here, we show that the robber crab has evolved an olfactory sense with a high degree of resemblance to the insect system. The similarities extend to physiological, behavioral, and morphological characters. The insect nose of the robber crab is a striking example of convergent evolution and nicely illustrates how similar selection pressures result in similar adaptation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                14 November 2012
                : 7
                : 11
                : e49809
                Affiliations
                [1 ]Ernst-Moritz-Arndt-University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
                [2 ]Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
                University of Arizona, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BSH SH. Performed the experiments: JK SH BSH MMD SE MCS. Analyzed the data: RG JK. Contributed reagents/materials/analysis tools: BSH SH. Wrote the paper: JK SH BSH.

                Article
                PONE-D-12-23288
                10.1371/journal.pone.0049809
                3498180
                23166774
                4cc2008c-d9aa-442d-9f17-68f2cdac2529
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 August 2012
                : 15 October 2012
                Page count
                Pages: 14
                Funding
                The study was funded by the Max Planck Society. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Animal Management
                Animal Behavior
                Biology
                Ecology
                Behavioral Ecology
                Evolutionary Ecology
                Evolutionary Biology
                Animal Behavior
                Behavioral Ecology
                Neuroscience
                Neuroethology
                Sensory Systems
                Zoology
                Animal Behavior
                Earth Sciences
                Geography
                Cartography
                Gis
                Social and Behavioral Sciences
                Geography
                Cartography
                Gis
                Veterinary Science
                Animal Management
                Animal Behavior

                Uncategorized
                Uncategorized

                Comments

                Comment on this article