20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson’s Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system.

          The mesocorticolimbic dopamine system is essential for cognitive and emotive brain functions and is thus an important target in major brain diseases like schizophrenia, drug addiction, and attention deficit hyperactivity disorder. However, the cellular basis for the diversity in behavioral functions and associated dopamine-release pattern within the mesocorticolimbic system has remained unclear. Here, we report the identification of a type of dopaminergic neuron within the mesocorticolimbic dopamine system with unconventional fast-firing properties and small DAT/TH mRNA expression ratios that selectively projects to prefrontal cortex and nucleus accumbens core and medial shell as well as to basolateral amygdala. In contrast, well-described conventional slow-firing dopamine midbrain neurons only project to the lateral shell of the nucleus accumbens and the dorsolateral striatum. Among this dual dopamine midbrain system defined in this study by converging anatomical, electrophysiological, and molecular properties, mesoprefrontal dopaminergic neurons are unique, as only they do not possess functional somatodendritic Girk2-coupled dopamine D2 autoreceptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease.

            In idiopathic Parkinson's disease massive cell death occurs in the dopamine-containing substantia nigra. A link between the vulnerability of nigral neurons and the prominent pigmentation of the substantia nigra, though long suspected, has not been proved. This possibility is supported by evidence that N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite MPP+, the latter of which causes destruction of nigral neurons, bind to neuromelanin. We have directly tested this hypothesis by a quantitative analysis of neuromelanin-pigmented neurons in control and parkinsonian midbrains. The findings demonstrate first that the dopamine-containing cell groups of the normal human midbrain differ markedly from each other in the percentage of neuromelanin-pigmented neurons they contain. Second, the estimated cell loss in these cell groups in Parkinson's disease is directly correlated (r = 0.97, P = 0.0057) with the percentage of neuromelanin-pigmented neurons normally present in them. Third, within each cell group in the Parkinson's brains, there is greater relative sparing of non-pigmented than of neuromelanin-pigmented neurons. This evidence suggests a selective vulnerability of the neuromelanin-pigmented subpopulation of dopamine-containing mesencephalic neurons in Parkinson's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of a mouse strain expressing Cre recombinase from the 3' untranslated region of the dopamine transporter locus.

              Dopamine (DA) neurotransmission has been implicated in several neurological and psychiatric disorders. The dopamine transporter (DAT) is highly expressed in dopaminergic neurons of the ventral mesencephalon and regulates neurotransmission by transporting DA back into the presynaptic terminals. To mediate restricted DNA recombination events into DA neurons using the Cre/loxP technology, we have generated a knockin mouse expressing Cre recombinase under the transcriptional control of the endogenous DAT promoter. To minimize interference with DAT function by preservation of both DAT alleles, Cre recombinase expression was driven from the 3' untranslated region (3'UTR) of the endogenous DAT gene by means of an internal ribosomal entry sequence. Crossing this murine line with a LacZ reporter showed colocalization of DAT immunocytochemistry and beta-galactosidase staining in all regions analyzed. This knockin mouse can be used for generating tissue specific knockouts in mice carrying genes flanked by loxP sites, and will facilitate the analysis of gene function in dopaminergic neurons. Copyright 2006 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                20 October 2016
                2016
                : 6
                : 35203
                Affiliations
                [1 ]Department of Organismal Biology/Comparative Physiology, Uppsala University , S-752 36 Uppsala, Sweden
                [2 ]Department of Neuroscience, Uppsala University , S-751 24 Uppsala, Sweden
                [3 ]Oramacell , 75006 Paris, France
                [4 ]Department of Anatomy and Neuroscience, University of Melbourne , Victoria 3010, Australia
                Author notes
                Article
                srep35203
                10.1038/srep35203
                5071886
                27762319
                4cc2ee68-339e-4fb3-94a9-12abb03ef135
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 August 2016
                : 26 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article