Blog
About

30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients

      , M.Sc. , M.Med. , Ph.D. , Ph.D. , B.Sc. , M.D. , B.Sc., , M.Sc., , B.Sc. , M.D. , M.Sc., , M.Sc., , B.Sc. , Ph.D., , Ph.D. , Ph.D.

      The New England Journal of Medicine

      Massachusetts Medical Society

      Keyword part (code): 18Keyword part (keyword): Infectious DiseaseKeyword part (code): 18_1Keyword part (keyword): Infectious Disease GeneralKeyword part (code): 18_6Keyword part (keyword): Viral InfectionsKeyword part (code): 18_9Keyword part (keyword): Global Health , 18, Infectious Disease, Keyword part (code): 18_1Keyword part (keyword): Infectious Disease GeneralKeyword part (code): 18_6Keyword part (keyword): Viral InfectionsKeyword part (code): 18_9Keyword part (keyword): Global Health , 18_1, Infectious Disease General, 18_6, Viral Infections, 18_9, Global Health

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor: The 2019 novel coronavirus (SARS-CoV-2) epidemic, which was first reported in December 2019 in Wuhan, China, and has been declared a public health emergency of international concern by the World Health Organization, may progress to a pandemic associated with substantial morbidity and mortality. SARS-CoV-2 is genetically related to SARS-CoV, which caused a global epidemic with 8096 confirmed cases in more than 25 countries in 2002–2003. 1 The epidemic of SARS-CoV was successfully contained through public health interventions, including case detection and isolation. Transmission of SARS-CoV occurred mainly after days of illness 2 and was associated with modest viral loads in the respiratory tract early in the illness, with viral loads peaking approximately 10 days after symptom onset. 3 We monitored SARS-CoV-2 viral loads in upper respiratory specimens obtained from 18 patients (9 men and 9 women; median age, 59 years; range, 26 to 76) in Zhuhai, Guangdong, China, including 4 patients with secondary infections (1 of whom never had symptoms) within two family clusters (Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). The patient who never had symptoms was a close contact of a patient with a known case and was therefore monitored. A total of 72 nasal swabs (sampled from the mid-turbinate and nasopharynx) (Figure 1A) and 72 throat swabs (Figure 1B) were analyzed, with 1 to 9 sequential samples obtained from each patient. Polyester flock swabs were used for all the patients. From January 7 through January 26, 2020, a total of 14 patients who had recently returned from Wuhan and had fever (≥37.3°C) received a diagnosis of Covid-19 (the illness caused by SARS-CoV-2) by means of reverse-transcriptase–polymerase-chain-reaction assay with primers and probes targeting the N and Orf1b genes of SARS-CoV-2; the assay was developed by the Chinese Center for Disease Control and Prevention. Samples were tested at the Guangdong Provincial Center for Disease Control and Prevention. Thirteen of 14 patients with imported cases had evidence of pneumonia on computed tomography (CT). None of them had visited the Huanan Seafood Wholesale Market in Wuhan within 14 days before symptom onset. Patients E, I, and P required admission to intensive care units, whereas the others had mild-to-moderate illness. Secondary infections were detected in close contacts of Patients E, I, and P. Patient E worked in Wuhan and visited his wife (Patient L), mother (Patient D), and a friend (Patient Z) in Zhuhai on January 17. Symptoms developed in Patients L and D on January 20 and January 22, respectively, with viral RNA detected in their nasal and throat swabs soon after symptom onset. Patient Z reported no clinical symptoms, but his nasal swabs (cycle threshold [Ct] values, 22 to 28) and throat swabs (Ct values, 30 to 32) tested positive on days 7, 10, and 11 after contact. A CT scan of Patient Z that was obtained on February 6 was unremarkable. Patients I and P lived in Wuhan and visited their daughter (Patient H) in Zhuhai on January 11 when their symptoms first developed. Fever developed in Patient H on January 17, with viral RNA detected in nasal and throat swabs on day 1 after symptom onset. We analyzed the viral load in nasal and throat swabs obtained from the 17 symptomatic patients in relation to day of onset of any symptoms (Figure 1C). Higher viral loads (inversely related to Ct value) were detected soon after symptom onset, with higher viral loads detected in the nose than in the throat. Our analysis suggests that the viral nucleic acid shedding pattern of patients infected with SARS-CoV-2 resembles that of patients with influenza 4 and appears different from that seen in patients infected with SARS-CoV. 3 The viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients, which suggests the transmission potential of asymptomatic or minimally symptomatic patients. These findings are in concordance with reports that transmission may occur early in the course of infection 5 and suggest that case detection and isolation may require strategies different from those required for the control of SARS-CoV. How SARS-CoV-2 viral load correlates with culturable virus needs to be determined. Identification of patients with few or no symptoms and with modest levels of detectable viral RNA in the oropharynx for at least 5 days suggests that we need better data to determine transmission dynamics and inform our screening practices.

          Related collections

          Most cited references 4

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study

          Summary Background We investigated the temporal progression of the clinical, radiological, and virological changes in a community outbreak of severe acute respiratory syndrome (SARS). Methods We followed up 75 patients for 3 weeks managed with a standard treatment protocol of ribavirin and corticosteroids, and assessed the pattern of clinical disease, viral load, risk factors for poor clinical outcome, and the usefulness of virological diagnostic methods. Findings Fever and pneumonia initially improved but 64 (85%) patients developed recurrent fever after a mean of 8.9 (SD 3.1) days, 55 (73%) had watery diarrhoea after 7.5 (2.3) days, 60 (80%) had radiological worsening after 7.4 (2.2) days, and respiratory symptoms worsened in 34 (45%) after 8.6 (3.0) days. In 34 (45%) patients, improvement of initial pulmonary lesions was associated with appearance of new radiological lesions at other sites. Nine (12%) patients developed spontaneous pneumomediastinum and 15 (20%) developed acute respiratory distress syndrome (ARDS) in week 3. Quantitative reverse-transcriptase (RT) PCR of nasopharyngeal aspirates in 14 patients (four with ARDS) showed peak viral load at day 10, and at day 15 a load lower than at admission. Age and chronic hepatitis B virus infection treated with lamivudine were independent significant risk factors for progression to ARDS (p=0.001). SARS-associated coronavirus in faeces was seen on RT-PCR in 65 (97%) of 67 patients at day 14. The mean time to seroconversion was 20 days. Interpretation The consistent clinical progression, shifting radiological infiltrates, and an inverted V viral-load profile suggest that worsening in week 2 is unrelated to uncontrolled viral replication but may be related to immunopathological damage. Published online May 9, 2003 http://image.thelancet.com/extras/03art4432web.pdf
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany

            To the Editor: The novel coronavirus (2019-nCoV) from Wuhan is currently causing concern in the medical community as the virus is spreading around the world. 1 Since identification of the virus in late December 2019, the number of cases from China that have been imported into other countries is on the rise, and the epidemiologic picture is changing on a daily basis. We are reporting a case of 2019-nCoV infection acquired outside Asia in which transmission appears to have occurred during the incubation period in the index patient. A 33-year-old otherwise healthy German businessman (Patient 1) became ill with a sore throat, chills, and myalgias on January 24, 2020. The following day, a fever of 39.1°C (102.4°F) developed, along with a productive cough. By the evening of the next day, he started feeling better and went back to work on January 27. Before the onset of symptoms, he had attended meetings with a Chinese business partner at his company near Munich on January 20 and 21. The business partner, a Shanghai resident, had visited Germany between January 19 and 22. During her stay, she had been well with no signs or symptoms of infection but had become ill on her flight back to China, where she tested positive for 2019-nCoV on January 26 (index patient in Figure 1) (see Supplementary Appendix, available at NEJM.org, for details on the timeline of symptom development leading to hospitalization). On January 27, she informed the company about her illness. Contact tracing was started, and the above-mentioned colleague was sent to the Division of Infectious Diseases and Tropical Medicine in Munich for further assessment. At presentation, he was afebrile and well. He reported no previous or chronic illnesses and had no history of foreign travel within 14 days before the onset of symptoms. Two nasopharyngeal swabs and one sputum sample were obtained and were found to be positive for 2019-nCoV on quantitative reverse-transcriptase–polymerase-chain-reaction (qRT-PCR) assay. 2 Follow-up qRT-PCR assay revealed a high viral load of 108 copies per milliliter in his sputum during the following days, with the last available result on January 29. On January 28, three additional employees at the company tested positive for 2019-nCoV (Patients 2 through 4 in Figure 1). Of these patients, only Patient 2 had contact with the index patient; the other two patients had contact only with Patient 1. In accordance with the health authorities, all the patients with confirmed 2019-nCoV infection were admitted to a Munich infectious diseases unit for clinical monitoring and isolation. So far, none of the four confirmed patients show signs of severe clinical illness. This case of 2019-nCoV infection was diagnosed in Germany and transmitted outside Asia. However, it is notable that the infection appears to have been transmitted during the incubation period of the index patient, in whom the illness was brief and nonspecific. 3 The fact that asymptomatic persons are potential sources of 2019-nCoV infection may warrant a reassessment of transmission dynamics of the current outbreak. In this context, the detection of 2019-nCoV and a high sputum viral load in a convalescent patient (Patient 1) arouse concern about prolonged shedding of 2019-nCoV after recovery. Yet, the viability of 2019-nCoV detected on qRT-PCR in this patient remains to be proved by means of viral culture. Despite these concerns, all four patients who were seen in Munich have had mild cases and were hospitalized primarily for public health purposes. Since hospital capacities are limited — in particular, given the concurrent peak of the influenza season in the northern hemisphere — research is needed to determine whether such patients can be treated with appropriate guidance and oversight outside the hospital.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission dynamics and control of severe acute respiratory syndrome.

              Severe acute respiratory syndrome (SARS) is a recently described illness of humans that has spread widely over the past 6 months. With the use of detailed epidemiologic data from Singapore and epidemic curves from other settings, we estimated the reproductive number for SARS in the absence of interventions and in the presence of control efforts. We estimate that a single infectious case of SARS will infect about three secondary cases in a population that has not yet instituted control measures. Public-health efforts to reduce transmission are expected to have a substantial impact on reducing the size of the epidemic.
                Bookmark

                Author and article information

                Journal
                N Engl J Med
                N. Engl. J. Med
                nejm
                The New England Journal of Medicine
                Massachusetts Medical Society
                0028-4793
                1533-4406
                19 March 2020
                : 382
                : 12
                : 1177-1179
                Affiliations
                Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
                Zhuhai Center for Disease Control and Prevention, Zhuhai, China
                Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
                Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
                Zhuhai Center for Disease Control and Prevention, Zhuhai, China
                Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
                Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
                Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
                Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
                University of Hong Kong, Hong Kong, China
                Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China 771276998@ 123456qq.com
                Article
                NJ202003193821219
                10.1056/NEJMc2001737
                7121626
                32074444
                Copyright © 2020 Massachusetts Medical Society. All rights reserved.

                This article is made available via the PMC Open Access Subset for unrestricted re-use, except commercial resale, and analyses in any form or by any means with acknowledgment of the original source. These permissions are granted for the duration of the Covid-19 pandemic or until revoked in writing. Upon expiration of these permissions, PMC is granted a license to make this article available via PMC and Europe PMC, subject to existing copyright protections.

                Product
                Categories
                Correspondence

                Comments

                Comment on this article