4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DeepSZ: A Novel Framework to Compress Deep Neural Networks by Using Error-Bounded Lossy Compression

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNNs have been quickly and broadly exploited to improve the data analysis quality in many complex science and engineering applications. Today's DNNs are becoming deeper and wider because of increasing demand on the analysis quality and more and more complex applications to resolve. The wide and deep DNNs, however, require large amounts of resources, significantly restricting their utilization on resource-constrained systems. Although some network simplification methods have been proposed to address this issue, they suffer from either low compression ratios or high compression errors, which may introduce a costly retraining process for the target accuracy. In this paper, we propose DeepSZ: an accuracy-loss bounded neural network compression framework, which involves four key steps: network pruning, error bound assessment, optimization for error bound configuration, and compressed model generation, featuring a high compression ratio and low encoding time. The contribution is three-fold. (1) We develop an adaptive approach to select the feasible error bounds for each layer. (2) We build a model to estimate the overall loss of accuracy based on the accuracy degradation caused by individual decompressed layers. (3) We develop an efficient optimization algorithm to determine the best-fit configuration of error bounds in order to maximize the compression ratio under the user-set accuracy constraint. Experiments show that DeepSZ can compress AlexNet and VGG-16 on the ImageNet by a compression ratio of 46X and 116X, respectively, and compress LeNet-300-100 and LeNet-5 on the MNIST by a compression ratio of 57X and 56X, respectively, with only up to 0.3% loss of accuracy. Compared with other state-of-the-art methods, DeepSZ can improve the compression ratio by up to 1.43X, the DNN encoding performance by up to 4.0X (with four Nvidia Tesla V100 GPUs), and the decoding performance by up to 6.2X.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          A unified architecture for natural language processing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Speech Recognition with Deep Recurrent Neural Networks

            Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates \emph{deep recurrent neural networks}, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Fast and Efficient Compression of Floating-Point Data

                Bookmark

                Author and article information

                Journal
                25 January 2019
                Article
                1901.09124
                4ce31820-ef95-4e9e-9a1c-89b7df6778d7

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                12 pages, 6 figures, submitted to HPDC'19
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article