29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins.

      Proceedings of the National Academy of Sciences of the United States of America
      Algorithms, Amino Acid Sequence, Bacterial Proteins, chemistry, genetics, metabolism, Cysteine, Fluorescence Resonance Energy Transfer, methods, Models, Chemical, Models, Molecular, Molecular Sequence Data, Mutagenesis, Site-Directed, Protein Binding, Protein Conformation, Protein Denaturation, Protein Folding, Proteins, Thermotoga maritima

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many eukaryotic proteins are disordered under physiological conditions, and fold into ordered structures only on binding to their cellular targets. Such intrinsically disordered proteins (IDPs) often contain a large fraction of charged amino acids. Here, we use single-molecule Förster resonance energy transfer to investigate the influence of charged residues on the dimensions of unfolded and intrinsically disordered proteins. We find that, in contrast to the compact unfolded conformations that have been observed for many proteins at low denaturant concentration, IDPs can exhibit a prominent expansion at low ionic strength that correlates with their net charge. Charge-balanced polypeptides, however, can exhibit an additional collapse at low ionic strength, as predicted by polyampholyte theory from the attraction between opposite charges in the chain. The pronounced effect of charges on the dimensions of unfolded proteins has important implications for the cellular functions of IDPs.

          Related collections

          Author and article information

          Comments

          Comment on this article