48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cytokine Storm in a Phase 1 Trial of the Anti-CD28 Monoclonal Antibody TGN1412

      Read this article at

      ScienceOpenPublisherPubMed

      Powered by

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Six healthy young male volunteers at a contract research organization were enrolled in the first phase 1 clinical trial of TGN1412, a novel superagonist anti-CD28 monoclonal antibody that directly stimulates T cells. Within 90 minutes after receiving a single intravenous dose of the drug, all six volunteers had a systemic inflammatory response characterized by a rapid induction of proinflammatory cytokines and accompanied by headache, myalgias, nausea, diarrhea, erythema, vasodilatation, and hypotension. Within 12 to 16 hours after infusion, they became critically ill, with pulmonary infiltrates and lung injury, renal failure, and disseminated intravascular coagulation. Severe and unexpected depletion of lymphocytes and monocytes occurred within 24 hours after infusion. All six patients were transferred to the care of the authors at an intensive care unit at a public hospital, where they received intensive cardiopulmonary support (including dialysis), high-dose methylprednisolone, and an anti-interleukin-2 receptor antagonist antibody. Prolonged cardiovascular shock and acute respiratory distress syndrome developed in two patients, who required intensive organ support for 8 and 16 days. Despite evidence of the multiple cytokine-release syndrome, all six patients survived. Documentation of the clinical course occurring over the 30 days after infusion offers insight into the systemic inflammatory response syndrome in the absence of contaminating pathogens, endotoxin, or underlying disease. Copyright 2006 Massachusetts Medical Society.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Article: not found

          American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference

          (1992)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical risks for development of the acute respiratory distress syndrome.

            To further understanding of the epidemiology of acute respiratory distress syndrome (ARDS), we prospectively identified 695 patients admitted to our intensive care units from 1983 through 1985 meeting criteria for seven clinical risks, and followed them for development of ARDS and eventual outcome. ARDS occurred in 179 of the 695 patients (26%). The highest incidence of ARDS occurred in patients with sepsis syndrome (75 of 176; 43%) and those with multiple emergency transfusions (> or = 15 units in 24 h) (46 of 115; 40%). Of patients with multiple trauma, 69 of 271 (25%) developed ARDS. If any two clinical risks for trauma were present, the incidence of ARDS was 23 of 57, or 40%. During the study period, we identified 48 patients with ARDS who did not have one of the defined clinical risks, yielding a sensitivity of 79% (179 of 227). Secondary factors associated with increased risk for ARDS in clinical risk subgroups include an elevated Acute Physiologic and Chronic Health Evaluation II (APACHE II) score in patients with sepsis and increased APACHE II and Injury Severity Scores (ISS) in trauma victims. Mortality was threefold higher when ARDS was present (62%) than among patients with clinical risks who did not develop ARDS (19%; p < 0.05). The difference in mortality if ARDS developed was particularly striking in patients with trauma (56% versus 13%), but less in those with sepsis (69% versus 49%). The mortality data should be interpreted with caution, since the fatality rate in ARDS patients appears to have decreased in our institution from the time that these data were collected.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells.

              The administration of the immunosuppressive humanized monoclonal antibody CAMPATH 1-H, which recognizes CD52 on lymphocytes and monocytes, is associated with a first-dose cytokine-release syndrome involving TNFalpha, IFNgamma, and IL-6 clinically. In vitro models have been used to establish the cellular source and mechanism responsible for cytokine release, demonstrating that cytokine release is isotype dependent, with the rat IgG2b and human IgG1 isotype inducing the highest levels of cytokine release, which was inhibited with antibody to CD16, the low affinity Fc-receptor for IgG (FcgammaR). Cross-linking antibody opsonized CD4 T lymphocytes failed to stimulate TNFalpha release, which together with the observation that TNFalpha release by purified natural killer (NK) cells stimulated by fixed autologous CAMPATH 1-H-opsonized targets was inhibited with anti-CD16, indicates that cytokine release results from ligation of CD16 on the NK cells, rather than Fc-receptor (FcR)-dependent cross-linking of CD52 on the targeted cell. Since the hierarchy of isotypes inducing cytokine release in these cultures matches that seen clinically, we conclude that ligation of CD16 on NK cells is also responsible for cytokine release after injection of CAMPATH 1-H in vivo.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                September 07 2006
                September 07 2006
                : 355
                : 10
                : 1018-1028
                Affiliations
                [1 ]From the Department of Intensive Care Medicine, Northwick Park and St. Mark's Hospital (G.S., M.R.P., S.W., A.C.-C., M.D.B.); the Department of Intensive Care Medicine, Hammersmith Hospital (S.J.B.); and the Department of Haematology, Imperial College London, Northwick Park and St. Mark's Campus (N.P.) — all in London.
                Article
                10.1056/NEJMoa063842
                16908486
                4d0f19ad-361e-4207-89ef-b93833135652
                © 2006
                History

                Comments

                Comment on this article