30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade.

      The Journal of Biological Chemistry
      3T3-L1 Cells, AMP-Activated Protein Kinases, Adipocytes, metabolism, Animals, Enzyme Activation, Gastric Inhibitory Polypeptide, chemistry, Glucose, Humans, Lipoprotein Lipase, Mice, Multienzyme Complexes, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins c-akt, Rats, Rats, Zucker

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucose-dependent insulinotropic polypeptide (GIP) has been mainly studied because of its glucose-dependent insulinotropic action and its ability to regulate beta-cell proliferation and survival. Considerably less is known about the effects of GIP on fat metabolism, and the present study was directed at identifying the mechanisms underlying its stimulatory action on lipoprotein lipase (LPL). In differentiated 3T3-L1 adipocytes, GIP, in the presence of insulin, increased LPL activity and triglyceride accumulation through a pathway involving increased phosphorylation of protein kinase B (PKB) and reductions in phosphorylated LKB1 and AMP-activated protein kinase (AMPK). Knockdown of AMPK using RNA interference and application of the AMPK inhibitor, Compound C, supported this conclusion. In contrast, the other major incretin hormone, glucagon-like peptide-1, exhibited no significant effects on LPL activity or PKB, LKB1, or AMPK phosphorylation. Cultured subcutaneous human adipocytes showed similar responses to GIP but with greater sensitivity. Chronic elevation of circulating GIP levels in the Vancouver diabetic fatty Zucker rat in vivo resulted in increased LPL activity and elevated triglyceride accumulation in epididymal fat tissue, combined with a modulation of PKB, LKB1, and AMPK phosphorylation similar to that observed in vitro. This appears to be the first demonstration of a GIP-stimulated signal transduction pathway involved in increasing fat storage in adipocytes.

          Related collections

          Author and article information

          Comments

          Comment on this article