13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolic evolution and the self-organization of ecosystems

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d6877940e208">Understanding what drives self-organization in complex systems and how it arises is a major challenge. We addressed this challenge using dominant oceanic photosynthetic and heterotrophic microbes as a model system. Reconstructing the metabolic evolution of this system suggests that its self-organization and self-amplification were coupled and driven by an increasing cellular energy flux. Specifically, the evolution of cells steadily increased their metabolic rate and excretion of organic carbon. We describe how this increases cellular nutrient uptake and thereby ecosystem biomass. The release of organic carbon, in turn, promotes positive feedbacks among species that reinforce this evolutionary drive at the ecosystem level. We propose the evolutionary self-organization of oceanic microbial ecosystems contributed to the oxygenation of Earth. </p><p class="first" id="d6877940e211">Metabolism mediates the flow of matter and energy through the biosphere. We examined how metabolic evolution shapes ecosystems by reconstructing it in the globally abundant oceanic phytoplankter <i>Prochlorococcus</i>. To understand what drove observed evolutionary patterns, we interpreted them in the context of its population dynamics, growth rate, and light adaptation, and the size and macromolecular and elemental composition of cells. This multilevel view suggests that, over the course of evolution, there was a steady increase in <i>Prochlorococcus</i>’ metabolic rate and excretion of organic carbon. We derived a mathematical framework that suggests these adaptations lower the minimal subsistence nutrient concentration of cells, which results in a drawdown of nutrients in oceanic surface waters. This, in turn, increases total ecosystem biomass and promotes the coevolution of all cells in the ecosystem. Additional reconstructions suggest that <i>Prochlorococcus</i> and the dominant cooccurring heterotrophic bacterium SAR11 form a coevolved mutualism that maximizes their collective metabolic rate by recycling organic carbon through complementary excretion and uptake pathways. Moreover, the metabolic codependencies of <i>Prochlorococcus</i> and SAR11 are highly similar to those of chloroplasts and mitochondria within plant cells. These observations lead us to propose a general theory relating metabolic evolution to the self-amplification and self-organization of the biosphere. We discuss the implications of this framework for the evolution of Earth’s biogeochemical cycles and the rise of atmospheric oxygen. </p>

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: not found

          Global iron connections between desert dust, ocean biogeochemistry, and climate.

          The environmental conditions of Earth, including the climate, are determined by physical, chemical, biological, and human interactions that transform and transport materials and energy. This is the "Earth system": a highly complex entity characterized by multiple nonlinear responses and thresholds, with linkages between disparate components. One important part of this system is the iron cycle, in which iron-containing soil dust is transported from land through the atmosphere to the oceans, affecting ocean biogeochemistry and hence having feedback effects on climate and dust production. Here we review the key components of this cycle, identifying critical uncertainties and priorities for future research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Processes and patterns of oceanic nutrient limitation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.

              The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 10(27) and 7.0 ± 0.3 × 10(26) cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 11 2017
                April 11 2017
                : 114
                : 15
                : E3091-E3100
                Article
                10.1073/pnas.1619573114
                5393222
                28348231
                4d1e88ea-aae9-4a66-a2ef-940a737713df
                © 2017
                History

                Comments

                Comment on this article