18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic compression counteracts IL-1β induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nitric oxide and prostaglandin E 2 (PGE 2play pivotal roles in both the pathogenesis of osteoarthritis and catabolic processes in articular cartilage. These mediators are influenced by both IL-1β and mechanical loading, and involve alterations in the inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes. To identify the specific interactions that are activated by both types of stimuli, we examined the effects of dynamic compression on levels of expression of iNOS and COX-2 and involvement of the p38 mitogen-activated protein kinase (MAPK) pathway.

          Methods

          Chondrocyte/agarose constructs were cultured under free-swelling conditions with or without IL-1β and/or SB203580 (inhibitor of p38 MAPK) for up to 48 hours. Using a fully characterized bioreactor system, constructs were subjected to dynamic compression for 6, 12 and 48 hours under similar treatments. The activation or inhibition of p38 MAPK by IL-1β and/or SB203580 was analyzed by western blotting. iNOS, COX-2, aggrecan and collagen type II signals were assessed utilizing real-time quantitative PCR coupled with molecular beacons. Release of nitrite and PGE 2 was quantified using biochemical assays. Two-way analysis of variance and the post hoc Bonferroni-corrected t-test were used to examine data.

          Results

          IL-1β activated the phosphorylation of p38 MAPK and this effect was abolished by SB203580. IL-1β induced a transient increase in iNOS expression and stimulated the production of nitrite release. Stimulation by either dynamic compression or SB203580 in isolation reduced the IL-1β induced iNOS expression and nitrite production. However, co-stimulation with both dynamic compression and SB203580 inhibited the expression levels of iNOS and production of nitrite induced by the cytokine. IL-1β induced a transient increase in COX-2 expression and stimulated the cumulative production of PGE 2 release. These effects were inhibited by dynamic compression or SB203580. Co-stimulation with both dynamic compression and SB203580 restored cytokine-induced inhibition of aggrecan expression. This is in contrast to collagen type II, in which we observed no response with the cytokine and/or SB203580.

          Conclusion

          These data suggest that dynamic compression directly influences the expression levels of iNOS and COX-2. These molecules are current targets for pharmacological intervention, raising the possibility for integrated pharmacological and biophysical therapies for the treatment of cartilage joint disorders.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1.

          A class of pyridinyl imidazoles inhibit the MAP kinase homologue, termed here reactivating kinase (RK) [Lee et al. (1994) Nature 372, 739-746]. We now show that one of these compounds (SB 203580) inhibits RK in vitro (IC50 = 0.6 microM), suppresses the activation of MAPKAP kinase-2 and prevents the phosphorylation of heat shock protein (HSP) 27 in response to interleukin-1, cellular stresses and bacterial endotoxin in vivo. These results establish that MAPKAP kinase-2 is a physiological RK substrate, and that HSP27 is phosphorylated by MAPKAP kinase-2 in vivo. The specificity of SB 203580 was indicated by its failure to inhibit 12 other protein kinases in vitro, and by its lack of effect on the activation of RK kinase and other MAP kinase cascades in vivo. We suggest that SB 203580 will be useful for identifying other physiological roles and targets of RK and MAPKAP kinase-2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3.

            To examine the mechanism of interleukin-1 (IL-1)-induced collagenase 3 (matrix metalloproteinase 13 [MMP-13]) gene expression in cultured chondrocytes for the purpose of better understanding how the gene is induced in these cells, and how it contributes to cartilage degradation in osteoarthritis. The transcriptional and posttranscriptional responses of the MMP-13 gene to IL-1 were assessed first. Then, direct inhibitors of mitogen-activated protein kinase (MAPK) signaling pathways and a constitutive repressor of nuclear factor kappaB (NF-kappaB) were used to assess the role of each pathway in IL-1-mediated induction of MMP-13. We found that IL-1 induction of MMP-13 requires p38 activity, c-Jun N-terminal kinase (JNK) activity and NF-kappaB translocation. These results suggest that both NF-kappaB and activator protein 1 transcription factors are necessary for IL-1 induction of MMP-13. We also compared the signaling pathways necessary for IL-1 to stimulate collagenase 1 (MMP-1) in articular chondrocytes and chondrosarcoma cells and found that IL-1 induction of MMP-1 requires different pathways from those required by MMP-13. In chondrosarcoma cells, MMP-1 induction depends on p38 and MEK (an MAPK kinase of the extracellular signal-regulated kinase pathway) and does not require JNK or NF-kappaB. In articular chondrocytes, inhibition of MEK had no effect, while inhibition of p38 gave variable results. These studies demonstrate, for the first time, that p38, JNK, and NF-kappaB are required for IL-1 induction of MMP-13. The results also highlight the differential requirements for signaling pathways in the induction of MMP-1 and MMP-13. Additionally, they demonstrate that induction of MMP-1 by IL-1 in chondrocytic cells depends on unique combinations of signaling pathways that are cell type-specific.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen and reactive oxygen species in cartilage degradation: friends or foes?

              This review is focused on the influence of oxygen and derived reactive species on chondrocytes aging, metabolic function and chondrogenic phenotype. A systematic computer-aided search of the Medline database. Articular cartilage is an avascular tissue, and consequently oxygen supply is reduced. Although the basal metabolic functions of the cells are well adapted to hypoxia, the chondrocyte phenotype seems to be oxygen sensitive. In vitro, hypoxia promotes the expression of the chondrogenic phenotype and cartilage-specific matrix formation, indicating that oxygen tension is probably a key parameter in chondrocyte culture, and particularly in the context of tissue engineering and stem cells transplantation. Besides the influence of oxygen itself, reactive oxygen species (ROS) play a crucial role in the regulation of a number of basic chondrocyte activities such as cell activation, proliferation and matrix remodeling. However, when ROS production exceeds the antioxidant capacities of the cell, an "oxidative stress" occurs leading to structural and functional cartilage damages like cell death and matrix degradation. This paper is an overview of the in vitro and in vivo studies published on the influence of oxygen and derived reactive species on chondrocyte aging, metabolic function, and the chondrogenic phenotype. It shows, that oxygen and ROS play a crucial role in the control of cartilage homeostasis and that at this time, the exact role of "oxidative stress" in cartilage degradation still remains questionable.
                Bookmark

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2008
                18 March 2008
                : 10
                : 2
                : R35
                Affiliations
                [1 ]School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
                [2 ]Queens Medical Research Institute, 47 Little France Cresent, Edinburgh University, EH16 4TJ. UK
                Article
                ar2389
                10.1186/ar2389
                2453754
                18348730
                4d3df6dd-9914-45b8-bf3f-096c1c2d03dd
                Copyright © 2008 Chowdhury et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 September 2007
                : 27 November 2007
                : 28 February 2008
                : 18 March 2008
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article