2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Systemic changes following carrageenan-induced paw inflammation in rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Current research on acute phase proteins in veterinary diagnosis: an overview.

          The acute phase proteins (APP) are a group of blood proteins that contribute to restoring homeostasis and limiting microbial growth in an antibody-independent manner in animals subjected to infection, inflammation, surgical trauma or stress. In the last two decades, many advances have been made in monitoring APP in both farm and companion animals for clinical and experimental purposes. Also, the mechanism of the APP response is receiving attention in veterinary science in connection with the innate immune systems of animals. This review describes the results of recent research on animal APP, with special reference to their induction and regulatory mechanisms, their biological functions, and their current and future applications to veterinary diagnosis and animal production.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coagulation, fibrinolysis, and fibrin deposition in acute lung injury.

              To review: a) the role of extravascular fibrin deposition in the pathogenesis of acute lung injury; b) the abnormalities in the coagulation and fibrinolysis pathways that promote fibrin deposition in the acutely injured lung; and c) the pathways that contribute to the regulation of the fibrinolytic system via the lung epithelium, including newly recognized posttranscriptional and urokinase-dependent pathways. Another objective was to determine how novel anticoagulant or fibrinolytic strategies may be used to protect against acute inflammation or accelerated fibrosis in acute lung injury. Published medical literature. Alveolar fibrin deposition is characteristic of diverse forms of acute lung injury. Intravascular thrombosis or disseminated intravascular coagulation can also occur in the acutely injured lung. Extravascular fibrin deposition promotes lung dysfunction and the acute inflammatory response. In addition, transitional fibrin in the alveolar compartment undergoes remodeling leading to accelerated pulmonary fibrosis similar to the events associated with wound healing, or desmoplasia associated with solid neoplasms. In acute lung injury, alveolar fibrin deposition is potentiated by consistent changes in endogenous coagulation and fibrinolytic pathways. Procoagulant activity is increased in conjunction with depression of fibrinolytic activity in the alveolar compartment. Initiation of the procoagulant response occurs as a result of local overexpression of tissue factor associated with factor VII. Depression of fibrinolytic activity occurs as a result of inhibition of urokinase plasminogen activator (uPA) by plasminogen activators, or series inhibition of plasmin by antiplasmins. Locally increased amplification of plasminogen activator inhibitor-1 (PAI-1) is largely responsible for this fibrinolytic defect. Newly described pathways by which lung epithelial cells regulate expression of uPA, its receptor uPAR, and PAI-1 at the posttranscriptional level have been identified. These pathways operate by cis-trans interactions between mRNA binding proteins; regulatory sequences within these mRNAs control their stability. The regulatory mechanisms seem to involve multiple protein-mRNA interactions, and the phosphorylation state of the proteins appears to determine whether complex formation of, or dissociation from, the regulatory sequences occurs. uPA is capable of inducing its own expression in lung epithelial cells as well as that of uPAR and PAI-1-the effects involve posttranscriptional regulatory components. These and related observations have led to the implementation of anticoagulant or fibrinolytic strategies to protect the lung against acute lung injury. The success of new fibrinolytic strategies to block pleural loculation suggests that a similar approach might be used to prevent accelerated pulmonary fibrosis, which can occur in association with many forms of acute lung injury. Disordered coagulation and fibrinolysis promote extravascular fibrin deposition in acute lung injury. It is this deposition that characterizes acute lung injury and repair. Expression of uPA, uPAR, and PAI-1 by the lung epithelium, as well as the ability of uPA to induce other components of the fibrinolytic system, involves posttranscriptional regulation. These pathways may contribute to disordered fibrin turnover in the injured lung. The success of anticoagulant or fibrinolytic strategies designed to reverse the abnormalities of local fibrin turnover in acute lung injury supports the inference that abnormalities of coagulation, fibrinolysis, and fibrin deposition have a critical role in the pathogenesis of acute lung injury.
                Bookmark

                Author and article information

                Journal
                Inflammation Research
                Inflamm. Res.
                Springer Science and Business Media LLC
                1023-3830
                1420-908X
                May 2015
                March 15 2015
                May 2015
                : 64
                : 5
                : 333-342
                Article
                10.1007/s00011-015-0814-0
                25772383
                4d4d3fa1-89b0-4de3-a54c-5c5f97c1fe73
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article