15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transactivation of PDGFRβ by dopamine D4 receptor does not require PDGFRβ dimerization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growth factor-induced receptor dimerization and cross-phosphorylation are hallmarks of signal transduction via receptor tyrosine kinases (RTKs). G protein-coupled receptors (GPCRs) can activate RTKs through a process known as transactivation. The prototypical model of RTK transactivation involves ligand-mediated RTK dimerization and cross-phosphorylation. Here, we show that the platelet-derived growth factor receptor β (PDGFRβ) transactivation by the dopamine receptor D4 (DRD4) is not dependent on ligands for PDGFRβ. Furthermore, when PDGFRβ dimerization is inhibited and receptor phosphorylation is suppressed to near basal levels, the receptor maintains its ability to be transactivated and is still effective in signaling to ERK1/2. Hence, the DRD4-PDGFRβ-ERK1/2 pathway can occur independently of a PDGF-like ligand, PDGFRβ cross-phosphorylation and dimerization, which is distinct from other known forms of transactivation of RTKs by GPCRs.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF.

          Cross-communication between different signalling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. The transactivation of epidermal growth factor receptor (EGFR)-dependent signalling pathways upon stimulation of G-protein-coupled receptors (GPCRs), which are critical for the mitogenic activity of ligands such as lysophosphatidic acid, endothelin, thrombin, bombesin and carbachol, provides evidence for such an interconnected communication network. Here we show that EGFR transactivation upon GPCR stimulation involves proHB-EGF and a metalloproteinase activity that is rapidly induced upon GPCR-ligand interaction. We show that inhibition of proHB-EGF processing blocks GPCR-induced EGFR transactivation and downstream signals. The pathophysiological significance of this mechanism is demonstrated by inhibition of constitutive EGFR activity upon treatment of PC3 prostate carcinoma cells with the metalloproteinase inhibitor batimastat. Together, our results establish a new mechanistic concept for cross-communication among different signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            G-protein-coupled receptors and signaling networks: emerging paradigms.

            G-protein-coupled receptors (GPCRs) constitute the largest family of cell-surface molecules involved in signal transmission. These receptors play key physiological roles and their dysfunction results in several diseases. Recently, it has been shown that many of the cellular responses mediated by GPCRs do not involve the sole stimulation of conventional second-messenger-generating systems, but instead result from the functional integration of an intricate network of intracellular signaling pathways. Effectors for GPCRs that are independent of G proteins have now also been identified, thus changing the conventional view of the GPCR-heterotrimeric-G-protein-associated effector. The emerging information is expected to help elucidate the most basic mechanism by which these receptors exert their numerous physiological roles, in addition to determining why the perturbation of their function results in many pathological conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal transduction via platelet-derived growth factor receptors.

              Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
                Bookmark

                Author and article information

                Journal
                Mol Brain
                Molecular Brain
                BioMed Central
                1756-6606
                2010
                26 July 2010
                : 3
                : 22
                Affiliations
                [1 ]Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, M5T 1R8, Canada
                [2 ]Department of Pharmacology, University of Toronto, Toronto, M5T 1R8, Canada
                [3 ]Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
                Article
                1756-6606-3-22
                10.1186/1756-6606-3-22
                2919524
                20659339
                4d4ebf1b-a696-4797-a67e-a9398ebe6660
                Copyright ©2010 Chi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 April 2010
                : 26 July 2010
                Categories
                Research

                Neurosciences
                Neurosciences

                Comments

                Comment on this article