12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Brain correlates of music-evoked emotions

      Nature Reviews Neuroscience

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

          Related collections

          Most cited references 132

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming by maternal behavior.

          Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neural bases of emotion regulation: reappraisal and suppression of negative emotion.

            Emotion regulation strategies are thought to differ in when and how they influence the emotion-generative process. However, no study to date has directly probed the neural bases of two contrasting (e.g., cognitive versus behavioral) emotion regulation strategies. This study used functional magnetic resonance imaging (fMRI) to examine cognitive reappraisal (a cognitive strategy thought to have its impact early in the emotion-generative process) and expressive suppression (a behavioral strategy thought to have its impact later in the emotion-generative process). Seventeen women viewed 15 sec neutral and negative emotion-eliciting films under four conditions--watch-neutral, watch-negative, reappraise-negative, and suppress-negative--while providing emotion experience ratings and having their facial expressions videotaped. Reappraisal resulted in early (0-4.5 sec) prefrontal cortex (PFC) responses, decreased negative emotion experience, and decreased amygdala and insular responses. Suppression produced late (10.5-15 sec) PFC responses, decreased negative emotion behavior and experience, but increased amygdala and insular responses. These findings demonstrate the differential efficacy of reappraisal and suppression on emotional experience, facial behavior, and neural response and highlight intriguing differences in the temporal dynamics of these two emotion regulation strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress, memory and the amygdala.

              Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function - from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                March 2014
                February 20 2014
                March 2014
                : 15
                : 3
                : 170-180
                Article
                10.1038/nrn3666
                24552785
                © 2014

                Comments

                Comment on this article