419
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolutionary dynamics of group interactions on structured populations: A review

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and nonliving matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proven valuable for studying pattern formation, equilibrium selection, and self-organisation in evolutionary games. Here we review recent advances in the study of evolutionary dynamics of group interactions on structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.

          Related collections

          Most cited references 133

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The structure and function of complex networks

           M. Newman (2003)
          Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Statistical mechanics of complex networks

            Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Power-law distributions in empirical data

              Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the detection and characterization of power laws is complicated by the large fluctuations that occur in the tail of the distribution -- the part of the distribution representing large but rare events -- and by the difficulty of identifying the range over which power-law behavior holds. Commonly used methods for analyzing power-law data, such as least-squares fitting, can produce substantially inaccurate estimates of parameters for power-law distributions, and even in cases where such methods return accurate answers they are still unsatisfactory because they give no indication of whether the data obey a power law at all. Here we present a principled statistical framework for discerning and quantifying power-law behavior in empirical data. Our approach combines maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov statistic and likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic data and give critical comparisons to previous approaches. We also apply the proposed methods to twenty-four real-world data sets from a range of different disciplines, each of which has been conjectured to follow a power-law distribution. In some cases we find these conjectures to be consistent with the data while in others the power law is ruled out.
                Bookmark

                Author and article information

                Journal
                10.1098/rsif.2012.0997
                1301.2247
                3565747
                23303223

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Comments

                Comment on this article