15
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Macrophage-derived Tumor Necrosis Factor-α mediates diabetic renal injury

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monocyte/macrophage recruitment correlates strongly with the progression of diabetic nephropathy. Tumor necrosis factor-alpha (TNF-α) is produced by monocytes/macrophages but the direct role of TNF-α and/or macrophage-derived TNF-α in the progression of diabetic nephropathy remains unclear. Here we tested whether inhibition of TNF-α confers kidney protection in diabetic nephropathy via a macrophage-derived TNF-α dependent pathway. Compared to vehicle-treated mice, blockade of TNF-α with a murine anti-TNF-α antibody conferred kidney protection in Ins2Akita mice as indicated by reductions in albuminuria, plasma creatinine, histopathologic changes, kidney macrophage recruitment and plasma inflammatory cytokine levels at 18 weeks of age. To assess the direct role of macrophage-derived TNF-α in diabetic nephropathy, we generated macrophage specific TNF-α deficient mice ( CD11bCre/TNF-α Flox/Flox ). Conditional ablation of TNF-α in macrophages significantly reduced albuminuria, the increase in plasma creatinine and BUN, histopathologic changes and kidney macrophage recruitment compared to diabetic TNF-α Flox/Flox control mice after 12 weeks of streptozotocin-induced diabetes. Thus, production of TNF-α by macrophages plays a major role in diabetic renal injury. Hence, blocking TNF-α could be a novel therapeutic approach for treatment of diabetic nephropathy.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.

          Many lines of evidence, ranging from in vitro experiments and pathological examinations to epidemiological studies, show that inflammation is a cardinal pathogenetic mechanism in diabetic nephropathy. Thus, modulation of inflammatory processes in the setting of diabetes mellitus is a matter of great interest for researchers today. The relationships between inflammation and the development and progression of diabetic nephropathy involve complex molecular networks and processes. This Review, therefore, focuses on key proinflammatory molecules and pathways implicated in the development and progression of diabetic nephropathy: the chemokines CCL2, CX3CL1 and CCL5 (also known as MCP-1, fractalkine and RANTES, respectively); the adhesion molecules intercellular adhesion molecule 1, vascular cell adhesion protein 1, endothelial cell-selective adhesion molecule, E-selectin and α-actinin 4; the transcription factor nuclear factor κB; and the inflammatory cytokines IL-1, IL-6, IL-18 and tumor necrosis factor. Advances in the understanding of the roles that these inflammatory pathways have in the context of diabetic nephropathy will facilitate the discovery of new therapeutic targets. In the next few years, promising new therapeutic strategies based on anti-inflammatory effects could be successfully translated into clinical treatments for diabetic complications, including diabetic nephropathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence

            Background People with diabetes can suffer from diverse complications that seriously erode quality of life. Diabetes, costing the United States more than $174 billion per year in 2007, is expected to take an increasingly large financial toll in subsequent years. Accurate projections of diabetes burden are essential to policymakers planning for future health care needs and costs. Methods Using data on prediabetes and diabetes prevalence in the United States, forecasted incidence, and current US Census projections of mortality and migration, the authors constructed a series of dynamic models employing systems of difference equations to project the future burden of diabetes among US adults. A three-state model partitions the US population into no diabetes, undiagnosed diabetes, and diagnosed diabetes. A four-state model divides the state of "no diabetes" into high-risk (prediabetes) and low-risk (normal glucose) states. A five-state model incorporates an intervention designed to prevent or delay diabetes in adults at high risk. Results The authors project that annual diagnosed diabetes incidence (new cases) will increase from about 8 cases per 1,000 in 2008 to about 15 in 2050. Assuming low incidence and relatively high diabetes mortality, total diabetes prevalence (diagnosed and undiagnosed cases) is projected to increase from 14% in 2010 to 21% of the US adult population by 2050. However, if recent increases in diabetes incidence continue and diabetes mortality is relatively low, prevalence will increase to 33% by 2050. A middle-ground scenario projects a prevalence of 25% to 28% by 2050. Intervention can reduce, but not eliminate, increases in diabetes prevalence. Conclusions These projected increases are largely attributable to the aging of the US population, increasing numbers of members of higher-risk minority groups in the population, and people with diabetes living longer. Effective strategies will need to be undertaken to moderate the impact of these factors on national diabetes burden. Our analysis suggests that widespread implementation of reasonably effective preventive interventions focused on high-risk subgroups of the population can considerably reduce, but not eliminate, future increases in diabetes prevalence.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Secretory products of macrophages.

              C F Nathan (1987)
                Bookmark

                Author and article information

                Journal
                0323470
                5428
                Kidney Int
                Kidney Int.
                Kidney international
                0085-2538
                1523-1755
                15 May 2015
                10 June 2015
                October 2015
                01 April 2016
                : 88
                : 4
                : 722-733
                Affiliations
                [1 ]Department of Medicine, Penn State University College of Medicine, Hershey, PA
                [2 ]Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA
                [3 ]Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia
                [4 ]Clinical Research Institute of Montreal, Départment de Médecine, Université de Montréal, Canada
                [5 ]Department of Immunology Research, Janssen R&D
                Author notes
                Address reprint requests: Alaa S. Awad, M.D., M.Sc., FSAN, Associate Professor of Medicine and Cellular & Molecular Physiology, Penn State University, Hershey Medical Center College of Medicine, Division of Nephrology, H040, 500 University Drive, P.O. Box 850, BMR Building, C5830, Hershey, PA 17033, Ph: 717-531-1713, Fax: 717-531-6776, asa17@ 123456psu.edu
                Article
                NIHMS690109
                10.1038/ki.2015.162
                4589442
                26061548
                4d79cd89-2e62-44cc-9aca-629b9fe5114c

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Nephrology
                albuminuria,diabetic nephropathy,inflammation
                Nephrology
                albuminuria, diabetic nephropathy, inflammation

                Comments

                Comment on this article