48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphate nutrition: improving low-phosphate tolerance in crops.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.

          Related collections

          Author and article information

          Journal
          Annu Rev Plant Biol
          Annual review of plant biology
          1545-2123
          1543-5008
          2014
          : 65
          Affiliations
          [1 ] StelaGenomics México, 36821 Irapuato, México; email: daliz@stelagenomics.mx , mleyva@stelagenomics.mx.
          Article
          10.1146/annurev-arplant-050213-035949
          24579991
          4d83de49-6323-4a27-bdad-60d7c7370fb2
          History

          Comments

          Comment on this article