74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diet-Induced Adipose Tissue Inflammation and Liver Steatosis Are Prevented by DPP-4 Inhibition in Diabetic Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Diet composition alters the metabolic states of adipocytes and hepatocytes in diabetes. The effects of dipeptidyl peptidase-4 (DPP-4) inhibition on adipose tissue inflammation and fatty liver have been obscure. We investigated the extrapancreatic effects of DPP-4 inhibition on visceral fat and the liver.

          RESEARCH DESIGN AND METHODS

          We investigated diet-induced metabolic changes in β-cell–specific glucokinase haploinsufficient ( Gck +/− ) diabetic mice. We challenged animals with a diet containing a combination of sucrose and oleic acid (SO) or sucrose and linoleic acid (SL). Next, we assessed the effects of a DPP-4 inhibitor, des-fluoro-sitagliptin, on adipose tissue inflammation and hepatic steatosis.

          RESULTS

          The epididymal fat weight and serum leptin level were significantly higher in Gck +/− mice fed SL than in mice fed SO, although no significant differences in body weight or adipocyte size were noted. Compared with SO, SL increased the numbers of CD11c + M1 macrophages and CD8 + T-cells in visceral adipose tissue and the expression of E-selectin, P-selectin, and plasminogen activator inhibitor-1 (PAI-1). DPP-4 inhibition significantly prevented adipose tissue infiltration by CD8 + T-cells and M1 macrophages and decreased the expression of PAI-1. The production of cytokines by activated T-cells was not affected by DPP-4 inhibition. Furthermore, DPP-4 inhibition prevented fatty liver in both wild-type and Gck +/− mice. DPP-4 inhibition also decreased the expressions of sterol regulatory element–binding protein-1c, stearoyl-CoA desaturase-1, and fatty acid synthase, and increased the expression of peroxisome proliferator–activated receptor-α in the liver.

          CONCLUSIONS

          Our findings indicated that DPP-4 inhibition has extrapancreatic protective effects against diet-induced adipose tissue inflammation and hepatic steatosis.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.

          Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucolipotoxicity: fuel excess and beta-cell dysfunction.

            Glucotoxicity, lipotoxicity, and glucolipotoxicity are secondary phenomena that are proposed to play a role in all forms of type 2 diabetes. The underlying concept is that once the primary pathogenesis of diabetes is established, probably involving both genetic and environmental forces, hyperglycemia and very commonly hyperlipidemia ensue and thereafter exert additional damaging or toxic effects on the beta-cell. In addition to their contribution to the deterioration of beta-cell function after the onset of the disease, elevations of plasma fatty acid levels that often accompany insulin resistance may, as glucose levels begin to rise outside of the normal range, also play a pathogenic role in the early stages of the disease. Because hyperglycemia is a prerequisite for lipotoxicity to occur, the term glucolipotoxicity, rather than lipotoxicity, is more appropriate to describe deleterious effects of lipids on beta-cell function. In vitro and in vivo evidence supporting the concept of glucotoxicity is presented first, as well as a description of the underlying mechanisms with an emphasis on the role of oxidative stress. Second, we discuss the functional manifestations of glucolipotoxicity on insulin secretion, insulin gene expression, and beta-cell death, and the role of glucose in the mechanisms of glucolipotoxicity. Finally, we attempt to define the role of these phenomena in the natural history of beta-cell compensation, decompensation, and failure during the course of type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance.

              Adipose tissue inflammation may play a critical role in the pathogenesis of insulin resistance (IR). The present study examined the role of lymphocytes in adipose tissue inflammation and IR. In a mouse model of obesity-mediated IR, high-fat diet (HFD) induced IR already after 5 weeks, which was associated with a marked T-lymphocyte infiltration in visceral adipose tissue. In contrast, recruitment of macrophages was delayed with an increase of MAC3-positive staining and F4/80 mRNA expression after 10 weeks of HFD, suggesting a dissociation of macrophage invasion into adipose tissue and IR initiation. In patients with type 2 diabetes, lymphocyte content in adipose tissue biopsies significantly correlated with waist circumference, a marker of IR. Immunohistochemical staining of human adipose tissue revealed the presence of mainly CD4-positive lymphocytes as well as macrophage infiltration. Most macrophages were HLA-DR-positive, reflecting activation through IFNgamma, a cytokine released from CD4-positive lymphocytes. Proinflammatory T-lymphocytes are present in visceral adipose tissue and may contribute to local inflammatory cell activation before the appearance of macrophages, suggesting that these cells could play an important role in the initiation and perpetuation of adipose tissue inflammation as well as the development of IR.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                April 2011
                22 March 2011
                : 60
                : 4
                : 1246-1257
                Affiliations
                [1] 1Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
                [2] 2Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
                [3] 3Division of Clinical Immunology, Institute of Medical Sciences, University of Tokyo, Tokyo, Japan
                [4] 4Food Science Institute, Division of Research and Development, Meiji Dairies Corporation, Odawara, Japan
                [5] 5Department of Molecular Pathology, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
                [6] 6Department of Clinical Nutrition, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
                Author notes
                Corresponding author: Yasuo Terauchi, terauchi-tky@ 123456umin.ac.jp .
                Article
                1338
                10.2337/db10-1338
                3064098
                21330637
                4d84759f-7f29-4d8f-a715-cdfdaeca9c24
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 20 September 2010
                : 27 December 2010
                Categories
                Pathophysiology

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article