21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1.

      Cancer research
      Adenocarcinoma, drug therapy, genetics, metabolism, pathology, Animals, Cadherins, biosynthesis, Cell Line, Tumor, Cell Movement, drug effects, physiology, Curcumin, pharmacology, HSP40 Heat-Shock Proteins, Humans, Lung Neoplasms, MAP Kinase Kinase 4, Mice, Mice, SCID, Neoplasm Invasiveness, Neoplasm Metastasis, Proto-Oncogene Proteins c-jun, Random Allocation, Signal Transduction, Transcription Factor AP-1, Transfection, Up-Regulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Curcumin (diferuloylmethane) is an active component of the spice turmeric and has a diversity of antitumor activities. In this study, we found that curcumin can inhibit cancer cell invasion and metastasis through activation of the tumor suppressor DnaJ-like heat shock protein 40 (HLJ1). Human lung adenocarcinoma cells (CL1-5) treated with curcumin (1-20 mumol/L) showed a concentration-dependent reduction in cell migration, invasion, and metastatic ability, and this was associated with increased HLJ1 expression. Knockdown of HLJ1 expression by siRNA was able to reverse the curcumin-induced anti-invasive and antimetastasis effects in vitro and in vivo. The HLJ1 promoter and enhancer in a luciferase reporter assay revealed that curcumin transcriptionally up-regulates HLJ1 expression through an activator protein (AP-1) site within the HLJ1 enhancer. JunD, one of the AP-1 components, was significantly up-regulated by curcumin (1-20 mumol/L) in a concentration- and time-dependent manner. Knockdown of JunD expression could partially reduce the curcumin-induced HLJ1 activation and diminish the anti-invasive effect of curcumin, indicating that JunD would seem to be involved in curcumin-induced HLJ1 expression. Curcumin was able to induce c-Jun NH(2)-kinase (JNK) phosphorylation, whereas the JNK inhibitor (SP-600125) could attenuate curcumin-induced JunD and HLJ1 expression. Activation of HLJ1 by curcumin further leads to up-regulation of E-cadherin and a suppression of cancer cell invasion. Our results show that curcumin induces HLJ1, through activation of the JNK/JunD pathway, and inhibits lung cancer cell invasion and metastasis by modulating E-cadherin expression. This is a novel mechanism and supports the application of curcumin in anti-cancer metastasis therapy.

          Related collections

          Author and article information

          Comments

          Comment on this article