13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coronavirus infections in children: from SARS and MERS to COVID-19, a narrative review of epidemiological and clinical features

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emerging and re-emerging viruses represent an important challenge for global public health. In the 1960s, coronaviruses (CoVs) were recognized as disease agents in humans. In only two decades, three strains of CoVs have crossed species barriers rapidly emerging as human pathogens resulting in life-threatening disease with a pandemic potential: severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, Middle-East respiratory syndrome coronavirus (MERS-CoV) in 2012 and the recently emerged SARS-CoV-2. This narrative review aims to provide a comprehensive overview of epidemiological, pathogenic and clinical features, along with diagnosis and treatment, of the ongoing epidemic of new coronavirus disease 2019 (COVID-19) in the pediatric population in comparison to the first two previous deadly coronavirus outbreaks, SARS and MERS. Literature analysis showed that SARS-CoV, MERS-CoV and SARS-CoV-2 infections seem to affect children less commonly and less severely as compared with adults. Since children are usually asymptomatic, they are often not tested, leading to an underestimate of the true numbers infected. Most of the documented infections belong to family clusters, so the importance of children in transmitting the virus remains uncertain. Like in SARS and MERS infection, there is the possibility that children are not an important reservoir for novel CoVs and this may have important implications for school attendance. While waiting for an effective against SARS-CoV-2, further prevalence studies in paediatric age are needed, in order to clarify the role of children in different age groups in the spread of the infection. (www.actabiomedica.it)

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A pneumonia outbreak associated with a new coronavirus of probable bat origin

            Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

              Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
                Bookmark

                Author and article information

                Journal
                Acta Biomed
                Acta Biomed
                Acta Bio Medica : Atenei Parmensis
                Mattioli 1885 (Italy )
                0392-4203
                2531-6745
                2020
                07 September 2020
                : 91
                : 3
                : e2020032
                Affiliations
                [1 ] Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
                Author notes
                Correspondence: Susanna Esposito Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma Via Gramsci 14 - 43126 Parma, Italy Tel. +39 0521 903524 E-mail: susanna.esposito@ 123456unimi.it
                Article
                ACTA-91-32
                10.23750/abm.v91i3.10294
                7716978
                32921726
                4d8eeb16-eb7c-45b6-b55e-3d24db297064
                Copyright: © 2020 ACTA BIO MEDICA SOCIETY OF MEDICINE AND NATURAL SCIENCES OF PARMA

                This work is licensed under a Creative Commons Attribution 4.0 International License

                History
                : 21 July 2020
                : 21 July 2020
                Categories
                Reviews / Focus on

                coronavirus,middle-east respiratory syndrome (mers),severe acute respiratory syndrome (sars),covid-19,children,clinical manifestations

                Comments

                Comment on this article