33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of Genome Size and Complexity in the Rhabdoviridae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.

          Author Summary

          Understanding the patterns and mechanisms of genome evolution is one of the most important, yet least understood, aspects of RNA virus biology. The evolutionary challenge faced by RNA viruses is to maximize functional diversity within severe constraints on genome size. Here we show that rhabdoviruses, a family of RNA viruses that infect hosts as diverse as plants, insects and vertebrates, have an unusual capacity for genomic plasticity. By analysing the complete or near-complete genome sequences of 99 animal rhabdoviruses, we show that genome expansion and contraction has likely occurred frequently throughout the evolution of the family. Genomic plasticity has been associated with the evolution of alternative, overlapping and consecutive ORFs within the major structural protein genes, as well as the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. This has resulted in remarkable diversity in genome organisation and gene expression strategies that is reflective of the broad ecological diversity of rhabdoviruses. We conclude that genomic plasticity in rhabdoviruses may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome and propose a general model that accounts for both gains and losses in genome size and complexity.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Rates of spontaneous mutation.

          Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase.

            The in vitro fidelity of the virion-associated RNA polymerase of vesicular stomatitis virus was quantitated for a single conserved viral RNA site and the usual high in vitro base misincorporation error frequencies (approx. 10(-3)) were observed at this (guanine) site. We sought evidence for RNA 3'-->5' exonuclease proofreading mechanisms by varying the concentrations of the next nucleoside triphosphate, by incorporation of nucleoside[1-thio]triphosphate analogues of the four natural RNA nucleosides, and by varying the concentrations of pyrophosphate in the in vitro polymerase reaction. None of these perturbations greatly affected viral RNA polymerase fidelity at the site studied. These results fail to show evidence for proofreading exonuclease activity associated with the virion replicase of an RNA virus. They suggest that RNA virus replication might generally be error-prone, because RNA replicase base misincorporations are proofread very inefficiently or not at all.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Error thresholds and the constraints to RNA virus evolution

              RNA viruses are often thought of as possessing almost limitless adaptability as a result of their extreme mutation rates. However, high mutation rates also put a cap on the size of the viral genome by establishing an error threshold, beyond which lethal numbers of deleterious mutations accumulate. Herein, I argue that a lack of genomic space means that RNA viruses will be subject to important evolutionary constraints because specific sequences are required to encode multiple and often conflicting functions. Empirical evidence for these constraints, and how they limit viral adaptability, is now beginning to accumulate. Documenting the constraints to RNA virus evolution has important implications for predicting the emergence of new viruses and for improving therapeutic procedures.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                13 February 2015
                February 2015
                : 11
                : 2
                : e1004664
                Affiliations
                [1 ]CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
                [2 ]Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
                [3 ]Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, Center for Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
                [4 ]Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
                Leiden University Medical Center, NETHERLANDS
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PJW NV RBT KRB. Performed the experiments: SGW HG TGW KRB. Analyzed the data: PJW CF ECH NV KRB. Contributed reagents/materials/analysis tools: RBT NV PJW. Wrote the paper: PJW CF NV ECH KRB PNP RBT.

                ‡ These authors contributed equally to this work.

                Article
                PPATHOGENS-D-14-01712
                10.1371/journal.ppat.1004664
                4334499
                25679389
                4d9b7ee3-cc58-4109-b744-dfa708b04b78
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 17 July 2014
                : 6 January 2015
                Page count
                Figures: 7, Tables: 1, Pages: 25
                Funding
                This work was supported in part by a grant from the Institute for Human Infections and Immunity, University of Texas Medical Branch (NV), and the National Institute of Health contract HHSN272201000040I/HHSN27200004/D04 (NV, RBT)( http://grants.nih.gov/grants/oer.htm). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data other than sequence files are within the paper and its Supporting Information files. All sequence files are available from the Gen Bank database (accession numbers KM085029, KM085030,KM204982–KM205026)

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article