74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiovascular reactivity, stress, and physical activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psychological stress has been proposed as a major contributor to the progression of cardiovascular disease (CVD). Acute mental stress can activate the sympathetic-adrenal-medullary (SAM) axis, eliciting the release of catecholamines (NE and EPI) resulting in the elevation of heart rate (HR) and blood pressure (BP). Combined stress (psychological and physical) can exacerbate these cardiovascular responses, which may partially contribute to the elevated risk of CVD and increased proportionate mortality risks experienced by some occupations (e.g., firefighting and law enforcement). Studies have supported the benefits of physical activity on physiological and psychological health, including the cardiovascular response to acute stress. Aerobically trained individuals exhibit lower sympathetic nervous system (e.g., HR) reactivity and enhanced cardiovascular efficiency (e.g., lower vascular reactivity and decreased recovery time) in response to physical and/or psychological stress. In addition, resistance training has been demonstrated to attenuate cardiovascular responses and improve mental health. This review will examine stress-induced cardiovascular reactivity and plausible explanations for how exercise training and physical fitness (aerobic and resistance exercise) can attenuate cardiovascular responses to stress. This enhanced functionality may facilitate a reduction in the incidence of stroke and myocardial infarction. Finally, this review will also address the interaction of obesity and physical activity on cardiovascular reactivity and CVD.

          Related collections

          Most cited references175

          • Record: found
          • Abstract: found
          • Article: not found

          Cortisol levels during human aging predict hippocampal atrophy and memory deficits.

          Elevated glucocorticoid levels produce hippocampal dysfunction and correlate with individual deficits in spatial learning in aged rats. Previously we related persistent cortisol increases to memory impairments in elderly humans studied over five years. Here we demonstrate that aged humans with significant prolonged cortisol elevations showed reduced hippocampal volume and deficits in hippocampus-dependent memory tasks compared to normal-cortisol controls. Moreover, the degree of hippocampal atrophy correlated strongly with both the degree of cortisol elevation over time and current basal cortisol levels. Therefore, basal cortisol elevation may cause hippocampal damage and impair hippocampus-dependent learning and memory in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mechanism converting psychosocial stress into mononuclear cell activation.

            Little is known about the mechanisms converting psychosocial stress into cellular dysfunction. Various genes, up-regulated in atherosclerosis but also by psychosocial stress, are controlled by the transcription factor nuclear factor kappaB (NF-kappaB). Therefore, NF-kappaB is a good candidate to convert psychosocial stress into cellular activation. Volunteers were subjected to a brief laboratory stress test and NF-kappaB activity was determined in peripheral blood mononuclear cells (PBMC), as a window into the body and because PBMC play a role in diseases such as atherosclerosis. In 17 of 19 volunteers, NF-kappaB was rapidly induced during stress exposure, in parallel with elevated levels of catecholamines and cortisol, and returned to basal levels within 60 min. To model this response, mice transgenic for a strictly NF-kappaB-controlled beta-globin transgene were stressed by immobilization. Immobilization resulted in increased beta-globin expression, which could be reduced in the presence of the alpha1-adrenergic inhibitor prazosin. To define the role of adrenergic stimulation in the up-regulation of NF-kappaB, THP-1 cells were induced with physiological amounts of catecholamines for 10 min. Only noradrenaline resulted in a dose- and time-dependent induction of NF-kappaB and NF-kappaB-dependent gene expression, which depended on pertussis-toxin-sensitive G protein-mediated phosphophatidylinositol 3-kinase, Ras/Raf, and mitogen-activated protein kinase activation. Induction was reduced by alpha(1)- and beta-adrenergic inhibitors. Thus, noradrenaline-dependent adrenergic stimulation results in activation of NF-kappaB in vitro and in vivo. Activation of NF-kappaB represents a downstream effector for the neuroendocrine response to stressful psychosocial events and links changes in the activity of the neuroendocrine axis to the cellular response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Sex differences in primary hypertension

              Men have higher blood pressure than women through much of life regardless of race and ethnicity. This is a robust and highly conserved sex difference that it is also observed across species including dogs, rats, mice and chickens and it is found in induced, genetic and transgenic animal models of hypertension. Not only do the differences between the ovarian and testicular hormonal milieu contribute to this sexual dimorphism in blood pressure, the sex chromosomes also play a role in and of themselves. This review primarily focuses on epidemiological studies of blood pressure in men and women and experimental models of hypertension in both sexes. Gaps in current knowledge regarding what underlie male-female differences in blood pressure control are discussed. Elucidating the mechanisms underlying sex differences in hypertension may lead to the development of anti-hypertensives tailored to one's sex and ultimately to improved therapeutic strategies for treating this disease and preventing its devastating consequences.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                28 August 2013
                07 November 2013
                2013
                : 4
                : 314
                Affiliations
                [1] 1Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton , FL, USA
                [2] 2Department of Kinesiology, Mississippi State University, Starkville , MS, USA
                [3] 3Department of Health and Human Performance, Virginia Commonwealth University, Richmond , VA, USA
                Author notes

                Edited by: Daniel Boullosa, Universidade Católica de Brasília, Brazil

                Reviewed by: Arto J. Hautala, Verve Research, Finland; Shane A. Phillips, University of Illinois at Chicago, USA

                *Correspondence: Chun-Jung Huang, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431, USA e-mail: chuang5@ 123456fau.edu

                This article was submitted to Clinical and Translational Physiology, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2013.00314
                3819592
                24223557
                4da35ad4-e841-4d42-be2a-78c0858b5a2e
                Copyright © 2013 Huang, Webb, Zourdos and Acevedo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 August 2013
                : 13 October 2013
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 197, Pages: 13, Words: 13042
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                psychological stress,obesity,physical activity,microvascular reactivity,inflammation,resistance exercise,oxidative stress,stress hormones

                Comments

                Comment on this article