19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cranial anatomy of Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio, Italy/Switzerland: taxonomic and palaeobiological implications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was described on the basis of a single fossil excavated near Besano (Italy) nearly three decades ago. Here, we re-examine its cranial osteology and assign five additional specimens to B. leptorhynchus, four of which were so far undescribed. All of the referred specimens were collected from the Middle Triassic outcrops of the Monte San Giorgio area (Italy/Switzerland) and are housed in various museum collections in Europe. The revised diagnosis of the taxon includes the following combination of cranial characters: extreme longirostry; an elongate frontal not participating in the supratemporal fenestra; a prominent ‘triangular process’ of the quadrate; a caudoventral exposure of the postorbital on the skull roof; a prominent coronoid (preglenoid) process of the surangular; tiny conical teeth with coarsely-striated crown surfaces and deeply-grooved roots; mesial maxillary teeth set in sockets; distal maxillary teeth set in a short groove. All these characters are shared with the holotype of Mikadocephalus gracilirostris Maisch & Matzke, 1997, which we consider as a junior synonym of B. leptorhynchus. An updated phylogenetic analysis, which includes revised scores for B. leptorhynchus and several other shastasaurids, recovers B. leptorhynchus as a basal merriamosaurian, but it is unclear if Shastasauridae form a clade, or represent a paraphyletic group. The inferred body length of the examined specimens ranges from 1 m to about 8 m. The extreme longirostry suggests that B. leptorhynchus primarily fed on small and elusive prey, feeding lower in the food web than an apex predator: a novel ecological specialisation never reported before the Anisian in a large diapsid. This specialization might have triggered an increase of body size and helped to maintain low competition among the diverse ichthyosaur fauna of the Besano Formation.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Re-epithelialization and immune cell behaviour in an ex vivo human skin model

          A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TNT version 1.5, including a full implementation of phylogenetic morphometrics

            Version 1.5 of the computer program TNT completely integrates landmark data into phylogenetic analysis. Landmark data consist of coordinates (in two or three dimensions) for the terminal taxa; TNT reconstructs shapes for the internal nodes such that the difference between ancestor and descendant shapes for all tree branches sums up to a minimum; this sum is used as tree score. Landmark data can be analysed alone or in combination with standard characters; all the applicable commands and options in TNT can be used transparently after reading a landmark data set. The program continues implementing all the types of analyses in former versions, including discrete and continuous characters (which can now be read at any scale, and automatically rescaled by TNT). Using algorithms described in this paper, searches for landmark data can be made tens to hundreds of times faster than it was possible before (from T to 3T times faster, where T is the number of taxa), thus making phylogenetic analysis of landmarks feasible even on standard personal computers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              TNT, a free program for phylogenetic analysis

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                6 May 2021
                2021
                : 9
                : e11179
                Affiliations
                [1 ]Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano , Milano, Italy
                [2 ]Institute of Paleobiology, Polish Academy of Sciences , Warsaw, Poland
                [3 ]Staatliches Museum für Naturkunde Stuttgart , Stuttgart, Germany
                [4 ]Paläontologisches Institut und Museum, Universität Zürich , Zürich, Switzerland
                [5 ]Sezione di Paleontologia dei Vertebrati, Museo di Storia Naturale di Milano , Milano, Italy
                Author information
                http://orcid.org/0000-0001-6359-3067
                http://orcid.org/0000-0002-6336-8916
                http://orcid.org/0000-0002-6888-3546
                http://orcid.org/0000-0002-6301-8983
                http://orcid.org/0000-0001-6791-6601
                Article
                11179
                10.7717/peerj.11179
                8106916
                33996277
                4da82d88-0293-40ee-879a-ef479a3ed82c
                © 2021 Bindellini et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 4 November 2020
                : 8 March 2021
                Funding
                Funded by: Natural Environment Research Council (NERC)
                Award ID: (NE/L501530/1)
                Funded by: Department of Earth Sciences, University of Oxford (2013–2017)
                Funded by: Swiss National Science Foundation
                Award ID: (31003A_179401)
                Comparative data collection by Andrzej S. Wolniewicz was funded by a Natural Environment Research Council (NERC) Ph. D. Studentship (cohort grant NE/L501530/1) carried out at the Department of Earth Sciences, University of Oxford (2013–2017). Torsten M. Scheyer was supproted by the Swiss National Science Foundation (grant no. 31003A_179401). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Evolutionary Studies
                Paleontology
                Taxonomy
                Zoology

                ichthyosauria,shastasauridae,middle triassic,besano formation,monte san giorgio,cranial anatomy,osteology,phylogeny,longirostry,marine reptiles

                Comments

                Comment on this article