9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Environmental DNA (eDNA) metabarcoding has been used increasingly to assess biodiversity of aquatic vertebrates. However, there still remains to be developed a sampling design of eDNA metabarcoding that can ensure high detection rates of species with minimum total survey effort, especially for large-scale surveys of aquatic organisms. We here tested whether pooling of eDNA samples can be used to evaluate biodiversity of freshwater fishes in four satellite lakes of Lake Biwa, Japan. Fish communities detected by eDNA metabarcoding of the mitochondrial 12S region were compared between the individual and pooled samples. In the individual samples, 31, 22, 33, and 31 fish lineages (proxies for species) were observed at the respective sites, within which moderate spatial autocorrelation existed. In the pooled samples, 30, 20, 29, and 27, lineages were detected, respectively, even after 15 PCR replicates. Lineages accounting for < 0.05% of the total read count of each site’s individual samples were mostly undetectable in the pooled samples. Moreover, fish communities detected were similar among PCR replicates in the pooled samples. Because of the decreased detection rates, the pooling strategy is unsuitable for estimating fish species richness. However, this procedure is useful potentially for among-site comparison of representative fish communities.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            BLAST+: architecture and applications

            Background Sequence similarity searching is a very important bioinformatics task. While Basic Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics, the speed of the current BLAST software is suboptimal for very long queries or database sequences. There are also some shortcomings in the user-interface of the current command-line applications. Results We describe features and improvements of rewritten BLAST software and introduce new command-line applications. Long query sequences are broken into chunks for processing, in some cases leading to dramatically shorter run times. For long database sequences, it is possible to retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for searches of short queries against databases of contigs or chromosomes. The program can now retrieve masking information for database sequences from the BLAST databases. A new modular software library can now access subject sequence data from arbitrary data sources. We introduce several new features, including strategy files that allow a user to save and reuse their favorite set of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site. Conclusion The new BLAST command-line applications, compared to the current BLAST tools, demonstrate substantial speed improvements for long queries as well as chromosome length database sequences. We have also improved the user interface of the command-line applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex.

              We constructed error-correcting DNA barcodes that allow one run of a massively parallel pyrosequencer to process up to 1,544 samples simultaneously. Using these barcodes we processed bacterial 16S rRNA gene sequences representing microbial communities in 286 environmental samples, corrected 92% of sample assignment errors, and thus characterized nearly as many 16S rRNA genes as have been sequenced to date by Sanger sequencing.
                Bookmark

                Author and article information

                Contributors
                h-sato@sys.bot.kyoto-u.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                1 November 2017
                1 November 2017
                2017
                : 7
                : 14860
                Affiliations
                [1 ]GRID grid.440926.d, Department of Environmental Solution Technology, Facility of Science & Technology, Ryukoku University, Seta-Oe, Otsu, ; 520-2194 Shiga, Japan
                [2 ]ISNI 0000 0001 0724 9317, GRID grid.266453.0, Graduate School of Simulation Studies, University of Hyogo, Minatojima-minamimachi, ; Kobe, 650-0047 Japan
                Author information
                http://orcid.org/0000-0002-2701-3982
                Article
                14978
                10.1038/s41598-017-14978-6
                5665893
                29093520
                4da83a17-4a89-4d7c-aa98-a3251770640c
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 May 2017
                : 18 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article