22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      The Endothelin-1 Pathway and the Development of Cardiovascular Defects in the Haemodynamically Challenged Chicken Embryo

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Ligating the right lateral vitelline vein of chicken embryos (venous clip) results in cardiovascular malformations. These abnormalities are similar to malformations observed in knockout mice studies of components of the endothelin-1 (ET-1)/endothelin-converting enzyme-1/endothelin-A receptor pathway. In previous studies we demonstrated that cardiac ET-1 expression is decreased 3 h after clipping, and ventricular diastolic filling is disturbed after 2 days. Therefore, we hypothesise that ET-1-related processes are involved in the development of functional and morphological cardiovascular defects after venous clip. Methods: In this study, ET-1 and endothelin receptor antagonists (BQ-123, BQ-788 and PD145065) were infused into the HH18 embryonic circulation. Immediate haemodynamic effects on the embryonic heart and extra-embryonic vitelline veins were examined by Doppler and micro-particle image velocimetry. Ventricular diastolic filling characteristics were studied at HH24, followed by cardiovascular morphologic investigation (HH35). Results: ET-1 and its receptor antagonists induced haemodynamic effects at HH18. At HH24, a reduced diastolic ventricular passive filling component was demonstrated, which was compensated by an increased active filling component. Thinner ventricular myocardium was shown in 42% of experimental embryos. Conclusion: We conclude that cardiovascular malformations after venous clipping arise from a combination of haemodynamic changes and altered gene expression patterns and levels, including those of the endothelin pathway.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          A series of normal stages in the development of the chick embryo

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2).

            The endothelium expresses a large repertoire of genes under apparent transcriptional control of biomechanical forces, many of which are neither cell-type nor flow specific. We set out to identify genes that are uniquely flow responsive in human vascular endothelial cells. Transcriptional profiling using commercial DNA microarrays identified 12 of 18 000 genes that were modulated at least 5-fold after 24 hours of steady laminar flow (25 dyne/cm(2)). After a 7-day exposure to unidirectional pulsatile flow (19 +/- 12 dyne/cm(2)), only 3 of 12 remained elevated at least 5-fold. A custom microarray of ~300 vascular cell-related gene fragments was constructed, and expression analysis revealed that many flow-induced genes are also induced by at least one of the following agents: tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), transforming growth factor-beta, vascular endothelial growth factor, or thrombin, indicating a more general role in adaptive or stress responses. Most flow-induced genes were also induced by TNF-alpha but not IL-1beta, suggesting the involvement of reactive oxygen species. A limited panel of genes that are unique for flow-exposed cultures was identified, including lung Krüppel-like factor (LKLF/KLF2) and cytochrome P450 1B1 (CYP1B1). In marked contrast, both these genes were substantially repressed by TNF-alpha. LKLF but not CYP1B1 mRNA was detected exclusively in the vascular endothelium of healthy human aorta by in situ hybridization and appeared to be flow regulated. To date LKLF is the first endothelial transcription factor that is uniquely induced by flow and might therefore be at the molecular basis of the physiological healthy, flow-exposed state of the endothelial cell.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A PIV Algorithm for Estimating Time-Averaged Velocity Fields

                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2008
                December 2007
                27 September 2007
                : 45
                : 1
                : 54-68
                Affiliations
                aDepartment of Anatomy and Embryology, Leiden University Medical Center, Leiden, bDepartment of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, cDepartment of Aero- and Hydrodynamics, Delft University of Technology, Delft, and dDepartment of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
                Article
                109077 J Vasc Res 2008;45:54–68
                10.1159/000109077
                17901707
                4db003f3-76ae-4a93-9b16-459667d3f91a
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 24 March 2007
                : 03 June 2007
                Page count
                Figures: 8, References: 45, Pages: 15
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Endothelin-B receptor,Endothelin-A receptor,Endothelin-1,Hemodynamics,Blood flow velocity,Atrioventricular function,Cardiac malformation,Chicken embryo

                Comments

                Comment on this article