46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.

          Author Summary

          Computational models of neurons and neural networks provide a valuable avenue to test our understanding of brain regions and to make predictions to guide future experimentation. Each neuron has a unique dendritic tree, features of which can vary depending on the location of the neuron within the particular brain region. In this study, we generated a complete population of dendritic trees for the most numerous type of neuron in the hippocampus, the dentate gyrus granule cell, using a realistic three-dimensional structural context to drive the generation process. Morphological properties can now be studied at the level of complete neuronal populations, and this work provides a foundation to build upon in the construction of large-scale, data-driven neuroanatomical and network models.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and functional implications of adult neurogenesis.

          The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator.

            A stereological method for obtaining estimates of the total number of neurons in five major subdivisions of the rat hippocampus is described. The new method, the optical fractionator, combines two recent developments in stereology: a three-dimensional probe for counting neuronal nuclei, the optical disector, and a systematic uniform sampling scheme, the fractionator. The optical disector results in unbiased estimates of neuron number, i.e., estimates that are free of assumptions about neuron size and shape, are unaffected by lost caps and overprojection, and approach the true number of neurons in an unlimited manner as the number of samples is increased. The fractionator involves sampling a known fraction of a structural component. In the case of neuron number, a zero dimensional quantity, it provides estimates that are unaffected by shrinkage before, during, and after processing of the tissue. Because the fractionator involves systematic sampling, it also results in highly efficient estimates. Typically only 100-200 neurons must be counted in an animal to obtain a precision that is compatible with experimental studies. The methodology is compared with those used in earlier works involving estimates of neuron number in the rat hippocampus and a number of new stereological methods that have particular relevance to the quantitative study of the structure of the nervous system are briefly described in an appendix.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dendritic organization in the neurons of the visual and motor cortices of the cat.

              D SHOLL (1953)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2014
                23 October 2014
                : 10
                : 10
                : e1003921
                Affiliations
                [1 ]Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
                [2 ]Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt/Main, Germany
                [3 ]Institute of Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany
                [4 ]Frankfurt Institute for Advanced Studies, Frankfurt/Main, Germany
                Hamburg University, Germany
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CJS HC IS. Performed the experiments: CJS. Analyzed the data: CJS HC. Contributed reagents/materials/analysis tools: CJS HC. Wrote the paper: CJS HC IS.

                Article
                PCOMPBIOL-D-14-01209
                10.1371/journal.pcbi.1003921
                4207466
                25340814
                4db2d409-a2d0-4627-b02b-4f14c5f626ba
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 July 2014
                : 17 September 2014
                Page count
                Pages: 10
                Funding
                This work was funded by the German Federal Ministry of Education and Research 01GQ1406 to HC ( www.bmbf.de), National Institutes of Health NS35915 to IS ( www.nih.gov), National Science Foundation IOS-1310378 to IS ( www.nsf.gov), and the National Aeronautics and Space Administration NNX10AD59G to IS ( www.nasa.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Computational Biology
                Computational Neuroscience
                Artificial Neural Networks
                Single Neuron Function
                Neuroscience
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article