Blog
About

65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TGF-β1 has been long considered as a key mediator in renal fibrosis and induces renal scarring largely by activating its downstream Smad signaling pathway. Interestingly, while mice overexpressing active TGF-β1 develop progressive renal injury, latent TGF-β1 plays a protective role in renal fibrosis and inflammation. Under disease conditions, Smad2 and Smad3 are highly activated, while Smad7 is degraded through the ubiquitin proteasome degradation mechanism. In addition to TGF-β1, many pathogenic mediators such as angiotensin II and advanced glycation end products can also activate the Smad pathway via both TGF-β-dependent and independent mechanisms. Smads interact with other signaling pathways, such as the MAPK and NF-κB pathways, to positively or negatively regulate renal inflammation and fibrosis. Studies from gene knockout mice demonstrate that TGF-β1 acts by stimulating its downstream Smads to diversely regulate kidney injury. In the context of renal fibrosis and inflammation, Smad3 is pathogenic, while Smad2 and Smad7 are protective. Smad4 exerts its diverse roles by transcriptionally enhancing Smad3-mediated renal fibrosis while inhibiting NF-κB-driven renal inflammation via a Smad7-dependent mechanism. Furthermore, we also demonstrated that TGF-β1 acts by stimulating Smad3 to positively or negatively regulate microRNAs to exert its fibrotic role in kidney disease. In conclusion, TGF-β/Smad signaling is a major pathway leading to kidney disease. Smad3 is a key mediator in renal fibrosis and inflammation, whereas Smad2 and Smad7 are renoprotective. Smad4 exerts its diverse role in promoting renal fibrosis while inhibiting inflammation. Thus, targeting the downstream TGF-β/Smad3 signaling pathway by gene transfer of either Smad7 or Smad3-dependent microRNAs may represent a specific and effective therapeutic strategy for kidney disease.

          Related collections

          Most cited references 81

          • Record: found
          • Abstract: found
          • Article: not found

          Smad-dependent and Smad-independent pathways in TGF-beta family signalling.

          Transforming growth factor-beta (TGF-beta) proteins regulate cell function, and have key roles in development and carcinogenesis. The intracellular effectors of TGF-beta signalling, the Smad proteins, are activated by receptors and translocate into the nucleus, where they regulate transcription. Although this pathway is inherently simple, combinatorial interactions in the heteromeric receptor and Smad complexes, receptor-interacting and Smad-interacting proteins, and cooperation with sequence-specific transcription factors allow substantial versatility and diversification of TGF-beta family responses. Other signalling pathways further regulate Smad activation and function. In addition, TGF-beta receptors activate Smad-independent pathways that not only regulate Smad signalling, but also allow Smad-independent TGF-beta responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene.

            Smad proteins play a key role in the intracellular signalling of transforming growth factor beta (TGF beta), which elicits a large variety of cellular responses. Upon TGF beta receptor activation, Smad2 and Smad3 become phosphorylated and form heteromeric complexes with Smad4. These complexes translocate to the nucleus where they control expression of target genes. However, the mechanism by which Smads mediate transcriptional regulation is largely unknown. Human plasminogen activator inhibitor-1 (PAI-1) is a gene that is potently induced by TGF beta. Here we report the identification of Smad3/Smad4 binding sequences, termed CAGA boxes, within the promoter of the human PAI-1 gene. The CAGA boxes confer TGF beta and activin, but not bone morphogenetic protein (BMP) stimulation to a heterologous promoter reporter construct. Importantly, mutation of the three CAGA boxes present in the PAI-1 promoter was found to abolish TGF beta responsiveness. Thus, CAGA elements are essential and sufficient for the induction by TGF beta. In addition, TGFbeta induces the binding of a Smad3/Smad4-containing nuclear complex to CAGA boxes. Furthermore, bacterially expressed Smad3 and Smad4 proteins, but not Smad1 nor Smad2 protein, bind directly to this sequence in vitro. The presence of this box in TGF beta-responsive regions of several other genes suggests that this may be a widely used motif in TGF beta-regulated transcription.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of immune responses by TGF-beta.

              The transforming growth factor beta (TGF-beta) family of proteins are a set of pleiotropic secreted signaling molecules with unique and potent immunoregulatory properties. TGF-beta 1 is produced by every leukocyte lineage, including lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these immune cells. TGF-beta can modulate expression of adhesion molecules, provide a chemotactic gradient for leukocytes and other cells participating in an inflammatory response, and inhibit them once they have become activated. Increased production and activation of latent TGF-beta have been linked to immune defects associated with malignancy and autoimmune disorders, to susceptibility to opportunistic infection, and to the fibrotic complications associated with chronic inflammatory conditions. In addition to these roles in disease pathogenesis, TGF-beta is now established as a principal mediator of oral tolerance and can be recognized as the sine qua non of a unique subset of effector cells that are induced in this process. The accumulated knowledge gained through extensive in vitro functional analyses and from in vivo animal models, including newly established TGF-beta gene knockout and transgenic mice, supports the concept that clinical therapies based on modulation of this cytokine represent an important new approach to the treatment of disorders of immune function.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2011
                2 September 2011
                : 7
                : 7
                : 1056-1067
                ijbsv07p1056
                3174390
                21927575
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                Categories
                Review

                Life sciences

                anti-tgf-β therapy, inflammation, tgf-β/smads, fibrosis, micrornas.

                Comments

                Comment on this article