19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one ( cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Transformation of intact yeast cells treated with alkali cations.

          Intact yeast cells treated with alkali cations took up plasmid DNA. Li+, Cs+, Rb+, K+, and Na+ were effective in inducing competence. Conditions for the transformation of Saccharomyces cerevisiae D13-1A with plasmid YRp7 were studied in detail with CsCl. The optimum incubation time was 1 h, and the optimum cell concentration was 5 x 10(7) cells per ml. The optimum concentration of Cs+ was 1.0 M. Transformation efficiency increased with increasing concentrations of plasmid DNA. Polyethylene glycol was absolutely required. Heat pulse and various polyamines or basic proteins stimulated the uptake of plasmid DNA. Besides circular DNA, linear plasmid DNA was also taken up by Cs+-treated yeast cells, although the uptake efficiency was considerably reduced. The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological, behavioral, and biochemical aspects of insect hydrocarbons.

            This review covers selected literature from 1982 to the present on some of the ecological, behavioral, and biochemical aspects of hydrocarbon use by insects and other arthropods. Major ecological and behavioral topics are species- and gender-recognition, nestmate recognition, task-specific cues, dominance and fertility cues, chemical mimicry, and primer pheromones. Major biochemical topics include chain length regulation, mechanism of hydrocarbon formation, timing of hydrocarbon synthesis and transport, and biosynthesis of volatile hydrocarbon pheromones of Lepidoptera and Coleoptera. In addition, a section is devoted to future research needs in this rapidly growing area of science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BLAST-EXPLORER helps you building datasets for phylogenetic analysis

              Background The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task. Results To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform. Conclusions BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                04 January 2013
                15 February 2013
                2013
                : 4
                : 24
                Affiliations
                [1] 1Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata CONICET-UNLP) La Plata, Argentina
                [2] 2Department of Microbiology and Cell Science, University of Florida Gainesville, FL, USA
                [3] 3Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University Nanjing, China
                Author notes

                Edited by: Rachel N. Austin, Bates College, USA

                Reviewed by: Rachel N. Austin, Bates College, USA; Alan A. DiSpirito, Ohio State University, USA

                *Correspondence: Nemat O. Keyhani, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA. e-mail: keyhani@ 123456ufl.edu

                This article was submitted to Frontiers in Microbiological Chemistry, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2013.00024
                3573267
                23422735
                4dbd1022-e758-4b16-b7bb-1607fbc31d3f
                Copyright © 2013 Pedrini, Ortiz-Urquiza, Huarte-Bonnet, Zhang and Keyhani.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 13 December 2012
                : 30 January 2013
                Page count
                Figures: 7, Tables: 3, Equations: 0, References: 119, Pages: 18, Words: 12786
                Categories
                Microbiology
                Original Research Article

                Microbiology & Virology
                b. basiana,entomopathogenic fungi,epicuticle,hydrocarbon degradation,cytochrome p450,host-pathogen coevolution

                Comments

                Comment on this article