11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EEG Resting State Functional Connectivity in Adult Dyslexics Using Phase Lag Index and Graph Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Developmental dyslexia may involve deficits in functional connectivity across widespread brain networks that enable fluent reading. We investigated the large-scale organization of electroencephalography (EEG) functional networks at rest in 28 dyslexics and 36 typically reading adults. For each frequency band (delta, theta alpha and beta), we assessed functional connectivity strength with the phase lag index (PLI). Network topology was examined using minimum spanning tree (MST) graphs derived from the functional connectivity matrices. We found significant group differences in the alpha band (8–13 Hz). The graph analysis indicated more interconnected nodes, in dyslexics compared to typical readers. The graph metrics were significantly correlated with age in dyslexics but not in typical readers, which may indicate more heterogeneity in maturation of brain networks in dyslexics. The present findings support the involvement of alpha oscillations in higher cognition and the sensitivity of graph metrics to characterize functional networks in adult dyslexia. Finally, the current results extend our previous findings on children.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modularity and community structure in networks

          M. Newman (2006)
          Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis.

            Evidence is presented that EEG oscillations in the alpha and theta band reflect cognitive and memory performance in particular. Good performance is related to two types of EEG phenomena (i) a tonic increase in alpha but a decrease in theta power, and (ii) a large phasic (event-related) decrease in alpha but increase in theta, depending on the type of memory demands. Because alpha frequency shows large interindividual differences which are related to age and memory performance, this double dissociation between alpha vs. theta and tonic vs. phasic changes can be observed only if fixed frequency bands are abandoned. It is suggested to adjust the frequency windows of alpha and theta for each subject by using individual alpha frequency as an anchor point. Based on this procedure, a consistent interpretation of a variety of findings is made possible. As an example, in a similar way as brain volume does, upper alpha power increases (but theta power decreases) from early childhood to adulthood, whereas the opposite holds true for the late part of the lifespan. Alpha power is lowered and theta power enhanced in subjects with a variety of different neurological disorders. Furthermore, after sustained wakefulness and during the transition from waking to sleeping when the ability to respond to external stimuli ceases, upper alpha power decreases, whereas theta increases. Event-related changes indicate that the extent of upper alpha desynchronization is positively correlated with (semantic) long-term memory performance, whereas theta synchronization is positively correlated with the ability to encode new information. The reviewed findings are interpreted on the basis of brain oscillations. It is suggested that the encoding of new information is reflected by theta oscillations in hippocampo-cortical feedback loops, whereas search and retrieval processes in (semantic) long-term memory are reflected by upper alpha oscillations in thalamo-cortical feedback loops. Copyright 1999 Elsevier Science B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrophysiological signatures of resting state networks in the human brain.

              Functional neuroimaging and electrophysiological studies have documented a dynamic baseline of intrinsic (not stimulus- or task-evoked) brain activity during resting wakefulness. This baseline is characterized by slow (<0.1 Hz) fluctuations of functional imaging signals that are topographically organized in discrete brain networks, and by much faster (1-80 Hz) electrical oscillations. To investigate the relationship between hemodynamic and electrical oscillations, we have adopted a completely data-driven approach that combines information from simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Using independent component analysis on the fMRI data, we identified six widely distributed resting state networks. The blood oxygenation level-dependent signal fluctuations associated with each network were correlated with the EEG power variations of delta, theta, alpha, beta, and gamma rhythms. Each functional network was characterized by a specific electrophysiological signature that involved the combination of different brain rhythms. Moreover, the joint EEG/fMRI analysis afforded a finer physiological fractionation of brain networks in the resting human brain. This result supports for the first time in humans the coalescence of several brain rhythms within large-scale brain networks as suggested by biophysical studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                30 August 2018
                2018
                : 12
                : 341
                Affiliations
                [1] 1Department of Psychology, University of Amsterdam , Amsterdam, Netherlands
                [2] 2Rudolf Berlin Center , Amsterdam, Netherlands
                [3] 3Department of Biological Psychology, VU University , Amsterdam, Netherlands
                [4] 4Neuroscience Campus Amsterdam, VU University , Amsterdam, Netherlands
                [5] 5Institute of Psychology, Leiden University , Leiden, Netherlands
                [6] 6Leiden Institute for Brain and Cognition, Leiden University , Leiden, Netherlands
                [7] 7IWAL Institute , Amsterdam, Netherlands
                [8] 8Department of Clinical Neuropsychology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam, Netherlands
                [9] 9Amsterdam Brain and Cognition, University of Amsterdam , Amsterdam, Netherlands
                Author notes

                Edited by: Ryouhei Ishii, Osaka University, Japan

                Reviewed by: Jesús Poza, University of Valladolid, Spain; Jonas Ranstam, Mdas AB, Sweden

                *Correspondence: Gorka Fraga González g.fragagonzalez@ 123456uva.nl
                Article
                10.3389/fnhum.2018.00341
                6125304
                29387003
                4dd883d5-6a28-49e5-8e6c-6c739ef1f59e
                Copyright © 2018 Fraga González, Smit, van der Molen, Tijms, Stam, de Geus and van der Molen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 February 2018
                : 10 August 2018
                Page count
                Figures: 4, Tables: 3, Equations: 2, References: 90, Pages: 12, Words: 10318
                Categories
                Neuroscience
                Original Research

                Neurosciences
                electroencephalography (eeg),functional connectivity,network,graph theory,minimum spanning tree,dyslexia

                Comments

                Comment on this article