Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Hormone Replacement Therapy Does Not Affect Plasma Homocysteine in Postmenopausal Women with Coronary Artery Disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: The objective was to evaluate the effect of hormone replacement therapy (HRT) on plasma homocysteine levels in postmenopausal women with coronary artery disease (CAD) and to investigate associations of homocysteine to other cardiovascular risk factors. Methods: The women in this single-center, controlled, and randomized study were examined at baseline, and after 3 and 12 months, after they had been recruited consecutively from patients referred for investigational coronary angiography. All analyses were performed examiner blind. They were randomized to HRT consisting of transdermal application of continuous 17β-estradiol with cyclic medroxyprogesterone acetate (MPA) tablets for 14 days every 3rd month, or to a control group. Results: After 3 months of unopposed 17β-estradiol, no significant effect on homocysteine was observed compared to the control group. The absolute decrease of 5% in median plasma homocysteine levels after 12-month HRT did not reach statistical significance. Plasma homocysteine seemed slightly higher in women with three- or four-vessel disease, but the difference was not significant. With increasing homocysteine levels, free tissue factor pathway inhibitor (TFPI) antigen increased, whereas E-selectin decreased. In women with diabetes or elevated blood glucose >6.0 mmol/l, plasma homocysteine was correlated to body mass index, C-peptide and insulin as well as age. Conclusion: Transdermal application of 17β-estradiol and sequential MPA do not affect plasma homocysteine in women with established CAD. Plasma homocysteine is stable in women with CAD over time, and unless special intervention is undertaken, repetitive measurements are not necessary in this particular group of high-risk individuals. The circulating anticoagulant TEPI is related to plasma homocysteine.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Homocysteine and cardiovascular disease.

          An elevated level of total homocysteine (tHcy) in blood, denoted hyperhomocysteinemia, is emerging as a prevalent and strong risk factor for atherosclerotic vascular disease in the coronary, cerebral, and peripheral vessels, and for arterial and venous thromboembolism. The basis for these conclusions is data from about 80 clinical and epidemiological studies including more than 10,000 patients. Elevated tHcy confers a graded risk with no threshold, is independent of but may enhance the effect of the conventional risk factors, and seems to be a particularly strong predictor of cardiovascular mortality. Hyperhomocysteinemia is attributed to commonly occurring genetic and acquired factors including deficiencies of folate and vitamin B12. Supplementation with B-vitamins, in particular with folic acid, is an efficient, safe, and inexpensive means to reduce an elevated tHcy level. Studies are now in progress to establish whether such therapy will reduce cardiovascular risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasma homocysteine levels and mortality in patients with coronary artery disease.

            Elevated plasma homocysteine levels are a risk factor for coronary heart disease, but the prognostic value of homocysteine levels in patients with established coronary artery disease has not been defined. We prospectively investigated the relation between plasma total homocysteine levels and mortality among 587 patients with angiographically confirmed coronary artery disease. At the time of angiography in 1991 or 1992, risk factors for coronary disease, including homocysteine levels, were evaluated. The majority of the patients subsequently underwent coronary-artery bypass grafting (318 patients) or percutaneous transluminal coronary angioplasty (120 patients); the remaining 149 were treated medically. After a median follow-up of 4.6 years, 64 patients (10.9 percent) had died. We found a strong, graded relation between plasma homocysteine levels and overall mortality. After four years, 3.8 percent of patients with homocysteine levels below 9 micromol per liter had died, as compared with 24.7 percent of those with homocysteine levels of 15 micromol per liter or higher. Homocysteine levels were only weakly related to the extent of coronary artery disease but were strongly related to the history with respect to myocardial infarction, the left ventricular ejection fraction, and the serum creatinine level. The relation of homocysteine levels to mortality remained strong after adjustment for these and other potential confounders. In an analysis in which the patients with homocysteine levels below 9 micromol per liter were used as the reference group, the mortality ratios were 1.9 for patients with homocysteine levels of 9.0 to 14.9 micromol per liter, 2.8 for those with levels of 15.0 to 19.9 micromol per liter, and 4.5 for those with levels of 20.0 micromol per liter or higher (P for trend=0.02). When death due to cardiovascular disease (which occurred in 50 patients) was used as the end point in the analysis, the relation between homocysteine levels and mortality was slightly strengthened. Plasma total homocysteine levels are a strong predictor of mortality in patients with angiographically confirmed coronary artery disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of estrogen replacement on the progression of coronary-artery atherosclerosis.

              Heart disease is a major cause of illness and death in women. To understand better the role of estrogen in the treatment and prevention of heart disease, more information is needed about its effects on coronary atherosclerosis and the extent to which concomitant progestin therapy may modify these effects. We randomly assigned a total of 309 women with angiographically verified coronary disease to receive 0.625 mg of conjugated estrogen per day, 0.625 mg of conjugated estrogen plus 2.5 mg of medroxyprogesterone acetate per day, or placebo. The women were followed for a mean (+/-SD) of 3.2+/-0.6 years. Base-line and follow-up coronary angiograms were analyzed by quantitative coronary angiography. Estrogen and estrogen plus medroxyprogesterone acetate produced significant reductions in low-density lipoprotein cholesterol levels (9.4 percent and 16.5 percent, respectively) and significant increases in high-density lipoprotein cholesterol levels (18.8 percent and 14.2 percent, respectively); however, neither treatment altered the progression of coronary atherosclerosis. After adjustment for measurements at base line, the mean (+/-SE) minimal coronary-artery diameters at follow-up were 1.87+/-0.02 mm, 1.84+/-0.02 mm, and 1.87+/-0.02 mm in women assigned to estrogen, estrogen plus medroxyprogesterone acetate, and placebo, respectively. The differences between the values for the two active-treatment groups and the value for the placebo group were not significant. Analyses of several secondary angiographic outcomes and subgroups of women produced similar results. The rates of clinical cardiovascular events were also similar among the treatment groups. Neither estrogen alone nor estrogen plus medroxyprogesterone acetate affected the progression of coronary atherosclerosis in women with established disease. These results suggest that such women should not use estrogen replacement with an expectation of cardiovascular benefit.
                Bookmark

                Author and article information

                Journal
                CRD
                Cardiology
                10.1159/issn.0008-6312
                Cardiology
                S. Karger AG
                0008-6312
                1421-9751
                2002
                September 2002
                26 September 2002
                : 98
                : 1-2
                : 6-12
                Affiliations
                aDepartment of Internal Medicine, bResearch Forum, and cDepartment of Medical Genetics, Ullevål University Hospital, Oslo, Norway
                Article
                64667 Cardiology 2002;98:6–12
                10.1159/000064667
                12373040
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Tables: 2, References: 42, Pages: 7
                Categories
                General Cardiology

                Comments

                Comment on this article