2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stretchable and Temperature‐Sensitive Polymer Optical Fibers for Wearable Health Monitoring

      1 , 1 , 1 , 2 , 1
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.

          Lanthanide ions exhibit unique luminescent properties, including the ability to convert near infrared long-wavelength excitation radiation into shorter visible wavelengths through a process known as photon upconversion. In recent years lanthanide-doped upconversion nanocrystals have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fluorophores and quantum dots for applications in biological assays and medical imaging. These techniques offer low autofluorescence background, large anti-Stokes shifts, sharp emission bandwidths, high resistance to photobleaching, and high penetration depth and temporal resolution. Such techniques also show potential for improving the selectivity and sensitivity of conventional methods. They also pave the way for high throughput screening and miniaturization. This tutorial review focuses on the recent development of various synthetic approaches and possibilities for chemical tuning of upconversion properties, as well as giving an overview of biological applications of these luminescent nanocrystals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array.

            A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temperature sensing using fluorescent nanothermometers.

              Acquiring the temperature of a single living cell is not a trivial task. In this paper, we devise a novel nanothermometer, capable of accurately determining the temperature of solutions as well as biological systems such as HeLa cancer cells. The nanothermometer is based on the temperature-sensitive fluorescence of NaYF(4):Er(3+),Yb(3+) nanoparticles, where the intensity ratio of the green fluorescence bands of the Er(3+) dopant ions ((2)H(11/2) --> (4)I(15/2) and (4)S(3/2) --> (4)I(15/2)) changes with temperature. The nanothermometers were first used to obtain thermal profiles created when heating a colloidal solution of NaYF(4):Er(3+),Yb(3+) nanoparticles in water using a pump-probe experiment. Following incubation of the nanoparticles with HeLa cervical cancer cells and their subsequent uptake, the fluorescent nanothermometers measured the internal temperature of the living cell from 25 degrees C to its thermally induced death at 45 degrees C.
                Bookmark

                Author and article information

                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                June 11 2019
                August 2019
                June 17 2019
                August 2019
                : 29
                : 33
                : 1902898
                Affiliations
                [1 ]State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentsTsinghua University Beijing 100084 China
                [2 ]Department of AutomationTsinghua University Beijing 100084 China
                Article
                10.1002/adfm.201902898
                4de484f4-65d6-4a95-be78-2f63c1f1fbd5
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article