0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid.

      The Journal of Biological Chemistry
      Alzheimer Disease, cerebrospinal fluid, Animals, Brain, metabolism, Dinoprost, analogs & derivatives, biosynthesis, Docosahexaenoic Acids, Humans, Mass Spectrometry, Rats, Stereoisomerism, Swine

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          F2-isoprostanes are prostaglandin F2-like compounds that are formed nonenzymatically by free radical-induced oxidation of arachidonic acid. We explored whether oxidation of docosahexaenoic acid (C22:6omega3), which is highly enriched in the brain, led to the formation of F2-isoprostane-like compounds, which we term F4-neuroprostanes. Oxidation of docosahexaenoic acid in vitro yielded a series of compounds that were structurally established to be F4-neuroprostanes using a number of mass spectrometric approaches. The amounts formed exceeded levels of F2-isoprostanes generated from arachidonic acid by 3.4-fold. F4-neuroprostanes were detected esterified in normal whole rat brain and newborn pig cortex at a level of 7.0 +/- 1.4 ng/g and 13.1 +/- 8 ng/g, respectively. Furthermore, F4-neuroprostanes could be detected in normal human cerebrospinal fluid and levels in patients with Alzheimer's disease (110 +/- 12 pg/ml) were significantly higher than age-matched controls (64 +/- 8 pg/ml) (p < 0.05). F4-neuroprostanes may provide a unique marker of oxidative injury to the brain and could potentially exert biological activity. Furthermore, the formation of F4-neuroprostane-containing aminophospholipids might adversely effect neuronal function as a result of alterations they induce in the biophysical properties of neuronal membranes.

          Related collections

          Author and article information

          Comments

          Comment on this article