8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping X-Disease Phytoplasma Resistance in Prunus virginiana

      research-article
      ,
      Frontiers in Plant Science
      Frontiers Media S.A.
      chokecherry, consensus map, tetraploid, QTL mapping, X-disease, phytoplasma, Prunus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phytoplasmas such as “ Candidatus Phytoplasma pruni,” the causal agent of X-disease of stone fruits, lack detailed biological analysis. This has limited the understanding of plant resistance mechanisms. Chokecherry ( Prunus virginiana L.) is a promising model to be used for the plant-phytoplasma interaction due to its documented ability to resist X-disease infection. A consensus chokecherry genetic map “Cho” was developed with JoinMap 4.0 by joining two parental maps. The new map contains a complete set of 16 linkage groups, spanning a genetic distance of 2,172 cM with an average marker density of 3.97 cM. Three significant quantitative trait loci (QTL) associated with X-disease resistance were identified contributing to a total of 45.9% of the phenotypic variation. This updated genetic linkage map and the identified QTL will provide the framework needed to facilitate molecular genetics, genomics, breeding, and biotechnology research concerning X-disease in chokecherry and other Prunus species.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Synteny and collinearity in plant genomes.

          Correlated gene arrangements among taxa provide a valuable framework for inference of shared ancestry of genes and for the utilization of findings from model organisms to study less-well-understood systems. In angiosperms, comparisons of gene arrangements are complicated by recurring polyploidy and extensive genome rearrangement. New genome sequences and improved analytical approaches are clarifying angiosperm evolution and revealing patterns of differential gene loss after genome duplication and differential gene retention associated with evolution of some morphological complexity. Because of variability in DNA substitution rates among taxa and genes, deviation from collinearity might be a more reliable phylogenetic character.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative mapping and marker-assisted selection in Rosaceae fruit crops.

            The development of saturated linkage maps using transferable markers, restriction fragment length polymorphisms, and micro-satellites has provided a foundation for fruit tree genetics and breeding. A Prunus reference map with 562 such markers is available, and a further set of 13 maps constructed with a subset of these markers has allowed genome comparison among seven Prunus diploid (x = 8) species (almond, peach, apricot, cherry, Prunus ferganensis, Prunus davidiana, and Prunus cerasifera); marker colinearity was the rule with all of them. Preliminary results of the comparison between apple and Prunus maps suggest a high level of synteny between these two genera. Conserved genomic regions have also been detected between Prunus and Arabidopsis. By using the data from different linkage maps anchored with the reference Prunus map, it has been possible to establish, in a general map, the position of 28 major genes affecting agronomic characters found in different species. Markers tightly linked to the major genes responsible for the expression of important traits (disease/pest resistances, fruit/nut quality, self-incompatibility, etc.) have been developed in apple and Prunus and are currently in use for marker-assisted selection in breeding programs. Quantitative character dissection using linkage maps and candidate gene approaches has already started. Genomic tools such as the Prunus physical map, large EST collections in both Prunus and Malus, and the establishment of the map position of high numbers of ESTs are required for a better understanding of the Rosaceae genome and to foster additional research and applications on fruit tree genetics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence mapping by electronic PCR.

              The highly specific and sensitive PCR provides the basis for sequence-tagged sites (STSs), unique landmarks that have been used widely in the construction of genetic and physical maps of the human genome. Electronic PCR (e-PCR) refers to the process of recovering these unique sites in DNA sequences by searching for subsequences that closely match the PCR primers and have the correct order, orientation, and spacing that they could plausibly prime the amplification of a PCR product of the correct molecular weight. A software tool was developed to provide an efficient implementation of this search strategy and allow the sort of en masse searching that is required for modern genome analysis. Some sample searches were performed to demonstrate a number of factors that can affect the likelihood of obtaining a match. Analysis of one large sequence database record revealed the presence of several microsatellite and gene-based markers and allowed the exact base-pair distances among them to be calculated. This example provides a demonstration of how e-PCR can be used to integrate the growing body of genomic sequence data with existing maps, reveal relationships among markers that existed previously on different maps, and correlate genetic distances with physical distances.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                29 November 2017
                2017
                : 8
                : 2057
                Affiliations
                Department of Plant Sciences, North Dakota State University , Fargo, ND, United States
                Author notes

                Edited by: Jacqueline Batley, University of Western Australia, Australia

                Reviewed by: Véronique Jorge, Institut National de Recherche Agronomique, France; Igor Pacheco, Universidad de Chile, Chile

                *Correspondence: Wenhao Dai wenhao.dai@ 123456ndsu.edu

                This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.02057
                5712551
                4df83ba6-9590-46eb-b7c2-e5aec3a0c80f
                Copyright © 2017 Lenz and Dai.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 August 2017
                : 17 November 2017
                Page count
                Figures: 3, Tables: 7, Equations: 0, References: 58, Pages: 12, Words: 9000
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                chokecherry,consensus map,tetraploid,qtl mapping,x-disease,phytoplasma,prunus
                Plant science & Botany
                chokecherry, consensus map, tetraploid, qtl mapping, x-disease, phytoplasma, prunus

                Comments

                Comment on this article