65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.

          Resistant starch (RS) is starch and products of its small intestinal digestion that enter the large bowel. It occurs for various reasons including chemical structure, cooking of food, chemical modification, and food mastication. Human colonic bacteria ferment RS and nonstarch polysaccharides (NSP; major components of dietary fiber) to short-chain fatty acids (SCFA), mainly acetate, propionate, and butyrate. SCFA stimulate colonic blood flow and fluid and electrolyte uptake. Butyrate is a preferred substrate for colonocytes and appears to promote a normal phenotype in these cells. Fermentation of some RS types favors butyrate production. Measurement of colonic fermentation in humans is difficult, and indirect measures (e.g., fecal samples) or animal models have been used. Of the latter, rodents appear to be of limited value, and pigs or dogs are preferable. RS is less effective than NSP in stool bulking, but epidemiological data suggest that it is more protective against colorectal cancer, possibly via butyrate. RS is a prebiotic, but knowledge of its other interactions with the microflora is limited. The contribution of RS to fermentation and colonic physiology seems to be greater than that of NSP. However, the lack of a generally accepted analytical procedure that accommodates the major influences on RS means this is yet to be established.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.

            Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced at high concentration by bacteria in the gut and subsequently released in the bloodstream. Basal acetate concentrations in the blood (about 100 microm) can further increase to millimolar concentrations following alcohol intake. It was known previously that SCFAs can activate leukocytes, particularly neutrophils. In the present work, we have identified two previously orphan G protein-coupled receptors, GPR41 and GPR43, as receptors for SCFAs. Propionate was the most potent agonist for both GPR41 and GPR43. Acetate was more selective for GPR43, whereas butyrate and isobutyrate were more active on GPR41. The two receptors were coupled to inositol 1,4,5-trisphosphate formation, intracellular Ca2+ release, ERK1/2 activation, and inhibition of cAMP accumulation. They exhibited, however, a differential coupling to G proteins; GPR41 coupled exclusively though the Pertussis toxin-sensitive Gi/o family, whereas GPR43 displayed a dual coupling through Gi/o and Pertussis toxin-insensitive Gq protein families. The broad expression profile of GPR41 in a number of tissues does not allow us to infer clear hypotheses regarding its biological functions. In contrast, the highly selective expression of GPR43 in leukocytes, particularly polymorphonuclear cells, suggests a role in the recruitment of these cell populations toward sites of bacterial infection. The pharmacology of GPR43 matches indeed the effects of SCFAs on neutrophils, in terms of intracellular Ca2+ release and chemotaxis. Such a neutrophil-specific SCFA receptor is potentially involved in the development of a variety of diseases characterized by either excessive or inefficient neutrophil recruitment and activation, such as inflammatory bowel diseases or alcoholism-associated immune depression. GPR43 might therefore constitute a target allowing us to modulate immune responses in these pathological situations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

              The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.
                Bookmark

                Author and article information

                Journal
                Immune Netw
                Immune Netw
                IN
                Immune Network
                The Korean Association of Immunologists
                1598-2629
                2092-6685
                December 2014
                22 December 2014
                : 14
                : 6
                : 277-288
                Affiliations
                Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine; Weldon School of Biomedical Engineering; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
                Author notes
                Corresponding Author. Chang H. Kim, Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine; Weldon School of Biomedical Engineering; Center for Cancer Research, Purdue University, VPTH 126, 725 Harrison Street, Purdue University, West Lafayette, IN 47907, USA. Tel: 1-765-494-0976; Fax: 1-765-494-9830; chkim@ 123456purdue.edu
                Article
                10.4110/in.2014.14.6.277
                4275385
                25550694
                4dfb83e8-d3a3-4532-a71c-e87d5578610f
                Copyright © 2014 The Korean Association of Immunologists

                This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 October 2014
                : 19 November 2014
                : 28 November 2014
                Funding
                Funded by: NIH
                Award ID: R01AI074745
                Award ID: R01DK076616
                Award ID: 1R01AI080769
                Award ID: R21AI105620
                Award ID: 1S10RR028293
                Funded by: USDA-NIFA
                Funded by: National Multiple Sclerosis Society
                Categories
                Review Article

                Immunology
                short-chain fatty acids,th1,th17,il-10,foxp3,microbiota,inflammation,colitis,microbial metabolites
                Immunology
                short-chain fatty acids, th1, th17, il-10, foxp3, microbiota, inflammation, colitis, microbial metabolites

                Comments

                Comment on this article