43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study was initiated to explore the mechanism of the effects of Bufei Yishen granules combined with acupoint sticking therapy (Shu-Fei Tie) on inflammation regulated by c-Jun N-terminal kinase (JNK) and p38 MAPK signaling in COPD rats. Seventy-two rats were divided into healthy control (Control), Model, Bufei Yishen (BY), acupoint sticking (AS), Bufei Yishen + acupoint sticking (BY + AS), and aminophylline (APL) groups ( n = 12 each). COPD rats were exposed to cigarette smoke and bacteria and were given the various treatments from weeks 9 through 20; all animals were sacrificed at the end of week 20. MCP-1, IL-2, IL-6, and IL-10 concentrations in BALF and lung tissue as well as JNK and p38 mRNA and protein levels in lung were measured. The results showed that all the four treatment protocols (BY, AS, BY + AS, and APL) markedly reduced the concentrations of IL-2, IL-6, and MCP-1 and levels of JNK and p38 MAPK mRNA, and the effects of Bufei Yishen granules combined with acupoint sticking therapy were better than acupoint sticking therapy only and aminophylline. In conclusion, the favorable effect of Bufei Yishen granules combined with Shu-Fei Tie may be due to decreased inflammation through regulation of the JNK/p38 signaling pathways.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways

          Bone marrow-derived mesenchymal stem cells (MSCs) have been identified as one possible strategy for the treatment of chronic obstructive pulmonary disease (COPD). Our previous studies have demonstrated that MSC administration has therapeutic potential in airway inflammation and emphysema via a paracrine mechanism. We proposed that MSCs reverse the inflammatory process and restore impaired lung function through their interaction with macrophages. In our study, the rats were exposed to cigarette smoke (CS), followed by the administration of MSCs into the lungs for 5 weeks. Here we show that MSC administration alleviated airway inflammation and emphysema through the down-regulation of cyclooxygenase-2 (COX-2) and COX-2-mediated prostaglandin E2 (PGE2) production, possibly through the effect on alveolar macrophages. In vitro co-culture experiments provided evidence that MSCs down-regulated COX-2/PGE2 in macrophages through inhibition of the activation-associated phosphorylation of p38 MAPK and ERK. Our data suggest that MSCs may relieve airway inflammation and emphysema in CS-exposed rat models, through the inhibition of COX-2/PGE2 in alveolar macrophages, mediated in part by the p38 MAPK and ERK pathways. This study provides a compelling mechanism for MSC treatment in COPD, in addition to its paracrine mechanism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease

            The present work adopted a systems pharmacology-based approach to provide new insights into the active compounds and therapeutic targets of Bufei Yishen formula (BYF) for the treatment of chronic obstructive pulmonary disease (COPD). In addition, we established a rat model of cigarette smoke- and bacterial infection-induced COPD to validate the mechanisms of BYF action that were predicted in systems pharmacology study. The systems pharmacology model derived 216 active compounds from BYF and 195 potential targets related to various diseases. The compound-target network showed that each herbal drug in the BYF formula acted on similar targets, suggesting potential synergistic effects among these herbal drugs. The ClueGo assay, a Cytoscape plugin, revealed that most targets were related to activation of MAP kinase and matrix metalloproteinases. By using target-diseases network analysis, we found that BYF had great potential to treatment of multiple diseases, such as respiratory tract diseases, immune system, and cardiovascular diseases. Furthermore, we found that BYF had the ability to prevent COPD and its comorbidities, such as ventricular hypertrophy, in vivo. Moreover, BYF inhibited the inflammatory cytokine, and hypertrophic factors expression, protease-antiprotease imbalance and the collagen deposition, which may be the underlying mechanisms of action of BYF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Short-chain fatty acids, GPR41 and GPR43 ligands, inhibit TNF-α-induced MCP-1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells.

              Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are produced predominantly by gut microbiota fermentation of dietary fiber. SCFAs are newly identified as endogenous ligands of two orphan G protein-coupled receptors, GPR41 and GPR43, which have the potential to modulate inflammation. Therefore, GPR41 and GPR43 may mediate the link between the gut microbiome status and various disease conditions including renal inflammation. This study aimed at investigating whether SCFAs activate GPR41 and GPR43, and thereby exert anti-inflammatory effects in human renal cortical epithelial cells (HRCEs) as a main component of kidney tissue. Immunohistochemical analyses of human renal biopsy specimens revealed the expression of GPR41 and GPR43 protein in the distal renal tubules and collecting tubules. TNF-α increased the expression of monocyte chemoattractant protein-1 (MCP-1), a potential fibrotic inducer, at least partly via enhancing phosphorylation of p38 and JNK in HRCEs. SCFAs, especially propionate, attenuated TNF-α- stimulated MCP-1 expression by inhibiting the phosphorylation of p38 and JNK. This inhibitory effect was considerably attenuated by an inactivator of the Gi/o-type G protein and a Gβγ (i/o) blocker, but not by a Gα (i/o) blocker. Furthermore, SCFA-mediated inhibition of MCP-1 expression was significantly blocked by siRNA-induced gene silencing of GPR41 and GPR43. In conclusion, SCFAs lowered TNF-α-induced MCP-1 expression by reducing phosphorylation of p38 and JNK in a GPR41/43-dependent manner in HRCEs, suggesting that SCFA modification may be a new therapeutic tool for preventing progression of renal inflammation and fibrosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2017
                30 October 2017
                : 2017
                : 1768243
                Affiliations
                1Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
                2Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
                3Central Laboratory and Respiratory Pharmacological Laboratory of Chinese Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
                4Institute of Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
                5Institute of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
                Author notes

                Academic Editor: Ji H. Kim

                Author information
                http://orcid.org/0000-0002-5849-4504
                http://orcid.org/0000-0002-2714-9353
                Article
                10.1155/2017/1768243
                5682917
                4dfcee14-145e-4113-b2f5-2c82e5f0cd0f
                Copyright © 2017 Yange Tian et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 June 2017
                : 16 September 2017
                : 2 October 2017
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81403367
                Award ID: 81130062
                Funded by: Scientific Research and Specific Fund for the National TCM Clinical Research Base
                Award ID: JDZX2012030
                Funded by: Education Department of Henan Province
                Award ID: 15A360027
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article