19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multiple Proton-Coupled Electron Transfers at a Tricopper Cluster: Modeling the Reductive Regeneration Process in Multicopper Oxidases

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metal clusters in enzymes carry out the life-sustaining reactions by accumulating multiple redox equivalents in a narrow potential range. This redox potential leveling effect commonly observed in Nature has yet to be reproduced with synthetic metal clusters. Herein, we employ a fully encapsulated synthetic tricopper complex to model the three-electron two-proton reductive regeneration of fully reduced trinuclear copper cluster CuICuICuI(μ2-OH2) (FR) from native intermediate CuIICuIICuII(μ3-O) (NI) in multicopper oxidases (MCOs). The tricopper cluster can access four oxidation states (I,I,I to II,II,II) and four protonation states ([Cu3(μ3-O)]LH, [Cu3(μ3-OH)]L, [Cu3(μ3-OH)]LH, and [Cu3(μ3-OH2)]L, where LH denotes the protonated ligand), allowing mechanistic investigation of proton-coupled electron transfer (PCET) relevant to MCOs. Seven tricopper complexes with discrete oxidation and protonation states were characterized with spectroscopy or X-ray single-crystal diffraction. A stepwise electron transfer-proton transfer (ET-PT) mechanism is established for the reduction of CuIICuIICuII(μ3-O)LH to CuIICuIICuI(μ3-OH)L, while a stepwise PT-ET mechanism is determined for the reduction of CuIICuICuI(μ3-OH)LH to CuICuICuI(μ2-OH2)L. The switch-over from ET-PT to PT-ET mechanism showcases that the tricopper complex can adopt different PCET mechanisms to circumvent high-barrier proton transfer steps. Overall, three-electron two-proton reduction occurs within a narrow potential range of 170 mV, exemplifying the redox potential leveling effect of secondary proton relays in delivering multiple redox equivalents at metal clusters.

          Related collections

          Author and article information

          Contributors
          Journal
          Journal of the American Chemical Society
          J. Am. Chem. Soc.
          American Chemical Society (ACS)
          0002-7863
          1520-5126
          February 02 2022
          January 19 2022
          February 02 2022
          : 144
          : 4
          : 1709-1717
          Affiliations
          [1 ]Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
          Article
          10.1021/jacs.1c10948
          35044761
          4e006524-323e-44a7-a8fb-2d257f28274e
          © 2022

          https://doi.org/10.15223/policy-029

          https://doi.org/10.15223/policy-037

          https://doi.org/10.15223/policy-045

          History

          Comments

          Comment on this article

          Related Documents Log