18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of a recombinant gene expression on ColE1-like plasmid segregation in Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Segregation of expression plasmids leads to loss of recombinant DNA from transformed bacterial cells due to the irregular distribution of plasmids between the daughter cells during cell division. Under non-selective conditions this segregational instability results in a heterogeneous population of cells, where the non-productive plasmid-free cells overgrow the plasmid-bearing cells thus decreasing the yield of recombinant protein. Amongst the factors affecting segregational plasmid instability are: the plasmid design, plasmid copy-number, host cell genotype, fermentation conditions etc. This study aims to investigate the influence of transcription and translation on the segregation of recombinant plasmids designed for constitutive gene expression in Escherichia coli LE392 at glucose-limited continuous cultivation. To this end a series of pBR322-based plasmids carrying a synthetic human interferon-gamma (hIFNγ) gene placed under the control of different regulatory elements (promoter and ribosome-binding sites) were used as a model.

          Results

          Bacterial growth and product formation kinetics of transformed E. coli LE392 cells cultivated continuously were described by a structured kinetic model proposed by Lee et al. (1985). The obtained results demonstrated that both transcription and translation efficiency strongly affected plasmid segregation. The segregation of plasmid having a deleted promoter did not exceed 5% after 190 h of cultivation. The observed high plasmid stability was not related with an increase in the plasmid copy-number. A reverse correlation between the yield of recombinant protein (as modulated by using different ribosome binding sites) and segregational plasmid stability (determined by the above model) was also observed.

          Conclusions

          Switching-off transcription of the hIFNγ gene has a stabilising effect on ColE1-like plasmids against segregation, which is not associated with an increase in the plasmid copy-number. The increased constitutive gene expression has a negative effect on segregational plasmid stability. A kinetic model proposed by Lee et al. (1985) was appropriate for description of E. coli cell growth and recombinant product formation in chemostat cultivations.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli.

          Real-time QPCR based methods for determination of plasmid copy number in recombinant Escherichia coli cultures are presented. Two compatible methods based on absolute and relative analyses were tested with recombinant E. coli DH5alpha harboring pBR322, which is a common bacterial cloning vector. The separate detection of the plasmid and the host chromosomal DNA was achieved using two separate primer sets, specific for the plasmid beta-lactamase gene (bla) and for the chromosomal d-1-deoxyxylulose 5-phosphate synthase gene (dxs), respectively. Since both bla and dxs are single-copy genes of pBR322 and E. coli chromosomal DNA, respectively, the plasmid copy number can be determined as the copy ratio of bla to dxs. These methods were successfully applied to determine the plasmid copy number of pBR322 of E. coli host cells. The results of the absolute and relative analyses were identical and highly reproducible with coefficient of variation (CV) values of 2.8-3.9% and 4.7-5.4%, respectively. The results corresponded to the previously reported values of pBR322 copy number within E. coli host cells, 15-20. The methods introduced in this study are convenient to perform and cost-effective compared to the traditionally used Southern blot method. The primer sets designed in this study can be used to determine plasmid copy number of any recombinant E. coli with a plasmid vector having bla gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasmid-encoded protein: the principal factor in the "metabolic burden" associated with recombinant bacteria.

            Experimental elucidation of the metabolic load placed on bacteria by the expression of foreign protein is presented. The host/vector system is Escherichia coli RR1/pBR329 (amp(r), cam(r), and let(r)). Plasmid content results, which indicate that the plasmid copy number monotonically increases with decreasing growth rate, are consistent with the literature on ColE1-like plasmids. More significantly, we have experimentally quantified the reduction in growth rate brought about by the expression of chloramphenicol-acetyl-transferase (CAT) and beta-lactamase. Results indicate a nearly linear decrease in growth rate with increasing foreign protein content. Also, the change in growth rate due to foreign protein expression depends on the growth rate of the cells. The observed linear relationship is media independent and, to our knowledge, previously undocumented. Furthermore, the induction of CAT, mediated by the presence of chloramphenicol, is shown to occur only at low growth rates, which further increases the metabolic load.Results are vdelineated with the aid of a structured kinetic model representing the metabolism of recombinant E. coli. In this article, several previous hypotheses and model predictions are justified and validated. This work provides an important step in the development of comprehensive, methabolically-structured, kinetic models capable of prediciting optimal conditions for maximizing product yield.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic load and heterologous gene expression.

              The expression of a foreign protein(s) in a recombinant host cell or organism often utilizes a significant amount of the host cell's resources, removing those resources away from host cell metabolism and placing a metabolic load (metabolic drain, metabolic burden) on the host. As a consequence of the imposed metabolic load, the biochemistry and physiology of the host may be dramatically altered. The numerous physiological changes that may occur often lowers the amount of the target foreign protein that is produced and eventually recovered from the recombinant organism. In this review the physiological changes to host cells, the causes of the phenomenon of metabolic load, and several strategies to avoid some of the problems associated with metabolic load are elaborated and discussed.
                Bookmark

                Author and article information

                Journal
                BMC Biotechnol
                BMC Biotechnology
                BioMed Central
                1472-6750
                2011
                1 March 2011
                : 11
                : 18
                Affiliations
                [1 ]Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 21, 1113 Sofia, Bulgaria
                [2 ]Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106 Magdeburg, Germany
                Article
                1472-6750-11-18
                10.1186/1472-6750-11-18
                3061898
                21362179
                4e23e7f8-e645-4812-bc10-39b77d52b099
                Copyright ©2011 Popov et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 July 2010
                : 1 March 2011
                Categories
                Research Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article