17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pulsed low-intensity ultrasound increases proliferation and extracelluar matrix production by human dermal fibroblasts in three-dimensional culture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study evaluated the effect of pulsed low-intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by human dermal fibroblasts encapsulated in alginate. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content, dimethylmethylene blue assay for glycosaminoglycan content and scanning electron microscopy were performed on the encapsulated cells treated with pulsed low-intensity ultrasound and a control group that remained untreated. Pulsed low-intensity ultrasound showed a significant effect on cell proliferation and collagen deposition but no consistent pattern for glycosaminoglycan content. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both treated and control groups. These results suggest that pulsed low-intensity ultrasound alone shows a positive effect on cell proliferation and collagen deposition even without growth factor supplements.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels for tissue engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wound healing--aiming for perfect skin regeneration.

            P. Martin (1997)
            The healing of an adult skin wound is a complex process requiring the collaborative efforts of many different tissues and cell lineages. The behavior of each of the contributing cell types during the phases of proliferation, migration, matrix synthesis, and contraction, as well as the growth factor and matrix signals present at a wound site, are now roughly understood. Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue.

              The dimethylmethylene blue assay for sulphated glycosaminoglycans has found wide acceptance as a quick and simple method of measuring the sulphated glycosaminoglycan content of tissues and fluids. The available assay methods have lacked specificity for sulphated glycosaminoglycans in the presence of other polyanions, however, and have not discriminated between the different sulphated glycosaminoglycans. We now describe a modified form of the dimethylmethylene blue assay that has improved specificity for sulphated glycosaminoglycans, and we show that in conjunction with specific polysaccharidases, the dimethylmethylene blue assay can be used to quantitate individual sulphated glycosaminoglycans.
                Bookmark

                Author and article information

                Journal
                J Tissue Eng
                J Tissue Eng
                TEJ
                sptej
                Journal of Tissue Engineering
                SAGE Publications (Sage UK: London, England )
                2041-7314
                19 November 2015
                Jan-Dec 2015
                : 6
                : 2041731415615777
                Affiliations
                [1 ]Faculty of Biosciences and Biomedical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
                [2 ]School of Chemical Engineering, University of Birmingham, Birmingham, UK
                [3 ]School of Mechanical Engineering, University of Birmingham, Birmingham, UK
                Author notes
                [*]Siti PM Bohari, Faculty of Biosciences and Biomedical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia. Email: pauliena@ 123456utm.my
                Article
                10.1177_2041731415615777
                10.1177/2041731415615777
                4674020
                4e2f349f-2095-46d1-b398-af8f71096f04
                © The Author(s) 2015

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 24 June 2015
                : 14 October 2015
                Categories
                Original Article
                Custom metadata
                January-December 2015

                Biomedical engineering
                alginate,collagen,glycosaminoglycan,human dermal fibroblast,proliferation,ultrasound

                Comments

                Comment on this article